Recently, there has been increasing interest in boiling nanofluids and their applications. Among the many articles that have been published, the critical heat flux (CHF) of nanofluids has drawn special attention because of its dramatic enhancement. This article includes recent studies on CHF increasing during the past decade by various researchers for both pool boiling and convective flow boiling applications using nanofluids as the working fluid. It presents a review of nanofluid critical heat flux research with the aim of identifying the reasons for its enhancement and the limitations of nanofluid applications based on various published reports. In addition, further research required to make use of the CHF enhancement caused by nanofluids for practical applications is discussed. Finally, the surface modification method with micro/nanostructures to increase the CHF is introduced and recommended as a useful way.

References

1.
Choi
,
S. U. S.
, 1995,
“Enhancing Thermal Conductivity of Fluids With Nanoparticles,” Developments and Applications of Non-Newtonian Flows
, Report No. FED-231/MD-66.
2.
Lee
,
J. K.
,
Hwang
,
Y. J.
,
Ahn
,
Y. C.
,
Shin
,
H. S.
,
Lee
,
C. G.
,
Kim
,
G. T.
, and
Park
,
H. S.
, 2006,
“Investigation on Characteristics of Thermal Conductivity Enhancement of Nanofluids,”
Curr. Appl. Phys.
,
6
, pp.
1068
1071
.
3.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Yu
,
W.
, and
Thompson
,
L. J.
, 2001,
“Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles,”
Appl. Phys. Lett.
,
78
, pp.
718
720
.
4.
Xuan
,
Y.
, and
Li
,
Q.
, 2000,
“Heat Transfer Enhancement of Nanofluids,”
Int. J. Heat Fluid Flow
,
21
, pp.
58
64
.
5.
Wen
,
D.
,
Lin
,
G.
,
Vafaei
,
S.
, and
Zhang
,
K.
, 2009,
“Review of Nanofluids for Heat Transfer Applications,”
Particuology
,
7
, pp.
141
150
.
6.
Cheng
,
L.
,
Bandarra Filho
,
E. P.
, and
Thome
,
J. R.
, 2008,
“Nanofluid Two-Phase Flow and Thermal Physics: A New Research Frontier of Nanotechnology and Its Challenges,”
J. Nanosci. Nanotechnol.
,
8
, pp.
3315
3332
.
7.
Chandrasekar
,
M.
, and
Suresh
,
S.
, 2009,
“A Review on the Mechanisms of Heat Transport in Nanofluids,”
Heat Transfer Eng.
,
30
, pp.
1136
1150
.
8.
Kakac
,
S.
, and
Pramuanjaroenkij
,
A.
, 2009,
“Review of Convective Heat Transfer Enhancement With Nanofluids,”
Int. J. Heat Mass Transfer
,
52
, pp.
3187
3196
.
9.
Kim
,
H.
, 2011,
“Enhancement of Critical Heat Flux in Nucleate Boiling of Nanofluids: A State-of-art Review,”
Nanoscale Res. Lett.
,
6
, pp.
415
.
10.
Yu
,
W.
,
France
,
D.
,
Routbort
,
J.
, and
Choi
,
S. U. S.
, 2008,
“Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements,”
Heat Transfer Eng.
,
29
, pp.
432
460
.
11.
Das
,
S. K.
,
Choi
,
S. U. S.
, and
Patel
,
H. E.
, 2006,
“Heat Transfer in Nanofluids—A Review,”
Heat Transfer Eng.
,
27
, pp.
3
19
.
12.
Patel
,
H. E.
,
Das
,
S. K.
,
Sundararajan
,
T.
,
Nair
,
A. S.
,
Geoge
,
B.
, and
Pradeep
,
T.
, 2003,
“Conductivities of Naked and Monolayer Protected Metal Nanoparticle Based Nanofluids: Manifestation of Anomalous Enhancement and Chemical Effects,”
Appl. Phys. Lett.
,
83
, pp.
2931
2933
.
13.
Keblinski
,
P.
,
Eastman
,
J. A.
, and
Cahill
,
D. G.
, 2005,
“Nanofluids for Thermal Transport,”
Mater. Today
,
8
, pp.
36
44
.
14.
Wen
,
D.
, and
Ding
,
Y.
, 2004,
“Experimental Investigation Into Convective Heat Transfer of Nanofluids at the Entrance Region Under Laminar Flow Conditions,”
Int. J. Heat Mass Transfer
,
47
, pp.
5181
5188
.
15.
Jackson
,
J.
, 2007,
“Investigation Into the Pool Boiling Characteristics of Gold Nanofluids,”
M.S. thesis, University of Missouri–Columbia, Columbia, MO.
16.
Das
,
S. K.
,
Putra
,
N.
, and
Roetzel
,
W.
, 2003,
“Pool Boiling Characteristics of Nano-Fluids,”
Int. J. Heat Mass Transfer
,
46
, pp.
851
862
.
17.
Chen
,
H. S.
,
Yang
,
W.
,
He
,
Y. R.
,
Ding
,
Y. L.
,
Zhang
,
L. L.
, and
Tan
,
C. Q.
, 2008,
“Heat Transfer and Flow Behaviour of Aqueous Suspensions of Titanate Nanotubes (Nanofluids),”
Powder Technol.
,
183
, pp.
63
72
.
18.
Tseng
,
W. J.
, and
Lin
,
K. C.
, 2003,
“Rheology and Colloidal Structure of Aqueous TiO2 Nanoparticle Suspensions,”
Mater. Sci. Eng., A
,
355
, pp.
186
192
.
19.
Zhou
,
S. Q.
, and
Ni
,
R.
, 2008,
“Measurement of the Specific Heat Capacity of Water-Based Al2O3 Nanofluids,”
Appl. Phys. Lett.
,
92
, p.
093123
.
20.
You
,
S. M.
,
Kim
,
J. H.
, and
Kim
,
K. H.
, 2003,
“Effect of Nanoparticles on Critical Heat Flux of Water in Pool Boiling Heat Transfer,”
Appl. Phys. Lett.
,
83
, pp.
3374
3376
.
21.
Vassallo
,
P.
,
Kumar
,
R.
, and
D’Amico
,
S.
, 2004,
“Pool Boiling Heat Transfer Experiments in Silica-Water Nano-Fluids,”
Int. J. Heat Mass Transfer
,
47
, pp.
407
411
.
22.
Dinh
,
N
,
Tu
,
J.
, and
Theofanous
,
T.
, 2004,
“Hydrodynamic and Physico-Chemical Nature of Burnout in Pool Boiling,”
Proceedings of the 5th International Conference on Multiphase Flow
,
Yokohama, Japan.
23.
Wasan
,
D. T.
, and
Nikolov
,
A. D.
, 2003,
“Spreading of Nanofluids on Solids,”
Nature
,
423
, pp.
156
159
.
24.
Milanova
,
D.
, and
Kumar
,
R.
, 2005,
“Role of Ions in Pool Boiling Heat Transfer of Pure and Silica Nanofluids,”
Appl. Phys. Lett.
,
87
, p.
233107
.
25.
Wen
,
D.
, and
Ding
,
Y.
, 2005,
“Experimental Investigation Into the Pool Boiling Heat Transfer of Aqueous Based γ-Alumina Nanofluids,”
J. Nanopart. Res.
,
7
, pp.
265
274
.
26.
Bang
,
I. C.
, and
Chang
,
S. H.
, 2005,
“Boiling Heat Transfer Performance and Phenomena of Al2O3-Water Nano-Fluids From a Plain Surface in a Pool,”
Int. J. Heat Mass Transfer
,
48
, pp.
2407
2419
.
27.
Kim
,
H. D.
, and
Kim
,
M. H.
, 2005,
“CHF Enhancement in Pool Boiling of Nanofluid: Effect of Nanoparticle-Coating on Heating Surface,”
Proceedings 2005 Spring Meeting of the Korean Nuclear Society
,
Korea.
28.
Kim
,
H. D.
,
Kim
,
J. B.
, and
Kim
,
M. H.
, 2006,
“Experimental Study on CHF Characteristics of Water–TiO2 Nano-Fluids,”
Nucl. Eng. Technol.
,
38
, pp.
61
68
.
29.
Kim
,
H. D.
,
Kim
,
J. B.
, and
Kim
,
M. H.
, 2006,
“Effect of Nanoparticles on CHF Enhancement in Pool Boiling of Nano-Fluids,”
Int. J. Heat Mass Transfer
,
49
, pp.
5070
5074
.
30.
Kim
,
H. D.
,
Kim
,
J. B.
, and
Kim
,
M. H.
, 2007,
“Experimental Studies on CHF Characteristics of Nano-Fluids at Pool Boiling,”
Int. J. Multiphase Flow
,
33
, pp.
691
706
.
31.
Golubovic
,
M. N.
,
Madhawa Hettiarachchi
,
H. D.
,
Worek
,
W. M.
, and
Minkowycz
,
W. J.
, 2009,
“Nanofluids and Critical Heat Flux, Experimental and Analytical Study,”
Appl. Therm. Eng.
,
29
, pp.
1281
1288
.
32.
Kim
,
S. J.
,
Bang
,
I. C.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
, 2006,
“Effects of Nanoparticle Deposition on Surface Wettability Influencing Boiling Heat Transfer in Nanofluids,”
Appl. Phys. Lett.
,
89
, p.
153107
.
33.
Kim
,
S. J.
,
Bang
,
I. C.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
, 2007,
“Surface Wettability Change During Pool Boiling of Nanofluids and Its Effect on Critical Heat Flux,”
Int. J. Heat Mass Transfer
,
50
, pp.
4105
4116
.
34.
Liu
,
Z.
, and
Liao
,
L.
, 2008,
“Sorption and Agglutination Phenomenon of Nanofluids on a Plane Heating Surface During Pool Boiling,”
Int. J. Heat Mass Transfer
,
51
, pp.
2593
2601
.
35.
Coursey
,
J. S.
, and
Kim
,
J.
, 2008,
“Nanofluid Boiling: The Effect of Surface Wettability,”
Int. J. Heat Fluid Flow
,
29
, pp.
1577
1585
.
36.
Jeong
,
Y. H.
,
Chang
,
W. J.
, and
Chang
,
S. H.
, 2008,
“Wettability of Heated Surfaces Under Pool Boiling Using Surfactant Solutions and Nano-Fluids,”
Int. J. Heat Mass Transfer
,
51
, pp.
3025
3031
.
37.
Kandlikar
,
S. G.
, 2001,
“A Theoretical Model to Predict Pool Boiling CHF Incorporating Effects of Contact Angle and Orientation,”
ASME J. Heat Transfer
,
123
, pp.
1071
1080
.
38.
Kim
,
H. D.
, and
Kim
,
M. H.
, 2007,
“Effect of Nanoparticle Deposition on Capillary Wicking That Influences the Critical Heat Flux in Nanofluids,”
Appl. Phys. Lett.
,
91
, p.
014104
.
39.
Kim
,
H. D.
,
Ahn
,
H. S.
, and
Kim
,
M. H.
, 2010,
“On the Mechanism of Pool Boiling Critical Heat Flux Enhancement in Nanofluids,”
ASME J. Heat Transfer
,
132
, p.
061501
.
40.
Arik
,
M.
, and
Bar
,
A. C.
, 2003,
“Effusivity-Based Correlation of Surface Property Effects in Pool Boiling CHF of Dielectric Liquids,”
Int. J. Heat Mass Transfer
,
46
, pp.
3755
3764
.
41.
Arik
,
M.
, and
Bar
,
A. C.
, 2010,
“Pool Boiling of Perfluorocarbon Mixtures on Silicon Surfaces,”
Int. J. Heat Mass Transfer
,
53
, pp.
5596
5604
.
42.
Raykar
,
V. S.
, and
Singh
,
A. K.
, 2010,
“Thermal and Rheological Behavior of Acetylacetone Stabilized ZnO Nanofluids,”
Thermochim. Acta
,
502
, pp.
60
65
.
43.
Sefiane
,
K.
, 2006,
“On the Role of Structural Disjoining Pressure and Contact Line Pinning in Critical Heat Flux Enhancement During Boiling of Nanofluids,”
Appl. Phys. Lett.
,
89
,
p.
044106
.
44.
Wen
,
D.
, 2008,
“Mechanisms of Thermal Nanofluids on Enhanced Critical Heat Flux (CHF),”
Int. J. Heat Mass Transfer
,
51
, pp.
4958
4965
.
45.
Park
,
S. D.
,
Lee
,
S. W.
,
Kang
,
S.
,
Bang
,
I. C.
,
Kim
,
J. H.
,
Shin
,
H. S.
,
Lee
,
D. W.
, and
Lee
,
D. W
, 2010,
“Effects of Nanofluids Containing Graphene/Graphene-Oxide Nanosheets on Critical Heat Flux,”
Appl. Phys. Lett.
,
97
, p.
23103
.
46.
Zuber
,
N.
, 1959,
“Hydrodynamic Aspects of Boiling Heat Transfer,”
Ph.D. thesis, University of California, Los Angeles, CA.
47.
Liter
,
S. G.
, and
Kaviany
,
M.
, 2001,
“Pool-Boiling CHF Enhancement by Modulated Porous-Layer Coating: Theory and Experiment,”
Int. J. Heat Mass Transfer
,
44
, pp.
4287
4311
.
48.
Lee
,
J.
, and
Mudawar
,
I.
, 2007,
“Assessment of the Effectiveness of Nanofluids for Single-Phase and Two-Phase Heat Transfer in Micro-Channels,”
Int. J. Heat Mass Transfer
,
50
, pp.
452
463
.
49.
Kim
,
S. J.
,
McKrell
,
T.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
, 2008,
“Alumina Nanoparticles Enhance the Flow Boiling Critical Heat Flux of Water at Low Pressure,”
ASME J. Heat Transfer
,
130
,
p.
044501
.
50.
Kim
,
S. J.
,
McKrell
,
T.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
, 2009,
“Experimental Study of Flow Critical Heat Flux in Alumina-Water, Zinc-Oxide-Water, and Diamond-Water Nanofluids,”
ASME J. Heat Transfer
,
131
, p.
043204
.
51.
Ahn
,
H. S.
,
Kim
,
H.
,
Jo
,
H. J.
,
Kang
,
S. H.
,
Chang
,
W. P.
, and
Kim
,
M. H.
, 2010,
“Experimental Study of Critical Heat Flux Enhancement During Force Convective Flow Boiling of Nanofluid on a Short Heated Surface,”
Int. J. Multiphase Flow
,
36
, pp.
375
384
.
52.
Kim
,
T. I.
,
Jeong
,
Y. H.
, and
Chang
,
S. H.
, 2010,
“An Experimental Study on CHF Enhancement in Flow Boiling Using Al2O3 Nano-Fluid,”
Int. J. Heat Mass Transfer
,
53
, pp.
1015
1022
.
53.
Ahn
,
H. S.
,
Kang
,
S. H.
,
Jo
,
H. J.
,
Kim
,
H.
, and
Kim
,
M. H.
, 2011,
“Visualization Study of the Effects of Nanoparticles Surface Deposition on Convective Flow Boiling CHF From a Short Heated Wall,”
Int. J. Multiphase Flow
,
37
, pp.
215
228
.
54.
Khanikar
,
V.
,
Mudawar
,
I.
, and
Fisher
,
T.
, 2009,
“Effects of Carbon Nanotube Coating on Flow Boiling in a Micro-Channel,”
Int. J. Heat Mass Transfer
,
52
, pp.
3805
3817
.
55.
Bnag
,
I. C.
, and
Heo
,
G.
, 2009,
“An Axiomatic Design Approach in Development of Nanofluid Coolants,”
Appl. Therm. Eng.
,
29
, pp.
75
90
.
56.
Buongiorno
,
J.
,
Hu
,
L. W.
,
Apostolakis
,
G.
,
Hannink
,
R.
,
Lucas
,
T.
, and
Chupin
,
A.
, 2009,
“A Feasibility Assessment of the Use of Nanofluids to Enhance the In-Vessel Retention Capability in Light-Water Reactor,”
Nucl. Eng. Des.
,
239
, pp.
941
948
.
57.
Kwark
,
S. M.
,
Moreno
,
G.
,
Kumar
,
R.
,
Moon
,
H.
, and
You
S. M.
, 2010,
“Nanocoating Characterization in Pool Boiling Heat Transfer of Pure Water,”
Int. J. Heat Mass Transfer
,
53
, pp.
4579
4587
.
58.
Costello
,
C. P.
, and
Frea
,
J. W.
, 1965,
“A Salient Nonhydrodynamic Effect on Pool Boiling Burnout of Small Semicylindrical Heaters,”
Chem. Eng. Prog. Symp. Series
,
61
, pp.
258
268
.
59.
Hahne
,
E.
, and
Diesselhorst
,
T.
, 1978,
“Hydrodynamic and Surface Effects on the Peak Heat Flux in Pool Boiling,”
Proceedings of the 6th International Heat Transfer Conference
,
Toronto
, Vol.
1
.
60.
Messina
,
A. D.
, and
Park
,
E. L.
, Jr.
, 1981,
“Effects of Precise Arrays of Pits on Nucleate Boiling,”
Int. J. Heat Mass Transfer
,
24
, pp.
141
145
.
61.
Marto
,
P. J.
, and
Lepere
,
V. J.
, 1982,
“Pool Boiling Heat Transfer From Enhanced Surfaces to Dielectric Fluids,”
ASME J. Heat Transfer
,
104
, pp.
292
299
.
62.
Chowdlhury
,
S. K. R.
, and
Winterton
,
R. H. S.
, 1985,
“Surface Effects in Pool Boiling,”
Int. J. Heat Mass Transfer
,
28
, pp.
1881
1889.
63.
Liaw
,
S. P.
, and
Dhir
,
V. K.
, 1986,
“Effect of Surface Wettability on Transition Boiling Heat Transfer From a Vertical Surface,”
Proceedings of the 8th International Heat Transfer Conference
, Vol.
4
, pp.
2031
2036
.
64.
Anderson
,
T. M.
, and
Mudawar
,
I.
, 1989,
“Microelectronic Cooling by Enhanced Pool Boiling of a Dielectric Fluorocarbon Liquid,”
ASME J. Heat Transfer
,
111
, pp.
752
759
.
65.
Golobic
,
I.
, and
Ferjancic
,
K.
, 2000,
“The Role of Enhanced Coated Surface in Pool Boiling CHF in FC-72,”
Heat Mass Transfer
,
36
, pp.
525
531
.
66.
Fong
,
R. W. L.
,
McRae
,
G. A.
, and
Coleman
,
C. E.
, 1999,
“Correlation Between the Critical Heat Flux and the Fractal Surface Roughness of Zirconium Alloy Tubes,”
Proceedings of the 9th International Topical Meeting on Nuclear Thermal Hydraulics (NURETH–9)
,
San Francisco.
67.
Ferjancic
,
K.
, and
Golobic
,
I.
, 2002,
“Surface Effects on Pool Boiling CHF,”
Exp. Therm. Fluid Sci.
,
25
, pp.
565
571
.
68.
Kim
,
J. H.
,
Rainey
,
K. N.
,
You
,
S. M.
, and
Pak
,
J. Y.
, 2002,
“Mechanism of Nucleate Boiling Heat Transfer Enhancement From Microporous Surfaces in Saturated FC-72,”
ASME J. Heat Transfer
,
124
, pp.
500
506
.
69.
Honda
,
H.
,
Takamastu
,
H.
, and
Wei
,
J. J.
, 2002,
“Enhanced Boiling of FC-72 on Silicon Chips with Micro-Pin-Fins and Submicron-Scale Roughness,”
ASME J. Heat Transfer
,
124
, pp.
383
390
.
70.
Fong
,
R. W. L.
,
Nitheanandan
,
T.
,
Bullock
,
C. D.
,
Slater
,
L. F.
, and
McRae
,
G. A.
, 2003,
“Effect of Oxidation and Fractal Surface Roughness on the Wettability and Critical Heat Flux of Class-Peened Zirconium Alloy Tubes,”
Proceedings of the 5th International Conference on Boiling Heat Transfer
,
Montego Bay, Jamaica.
71.
Takata
,
Y.
,
Hidaka
,
S.
,
Masuda
,
M.
, and
Ito
,
T.
, 2003,
“Pool Boiling on a Superhydrophilic Surface,”
Int. J. Energy Res.
,
27
, pp.
111
119
.
72.
Ujereh
,
S.
,
Fisher
,
T.
, and
Mudawar
,
I.
, 2007,
“Effects of Carbon Nanotube Arrays on Nucleate Pool Boiling,”
Int. J. Heat Mass Transfer
,
50
, pp.
4023
4038
.
73.
Vemuri
,
S.
, and
Kim
,
K. J.
, 2005,
“Pool Boiling of Saturated FC-72 on Nano-Porous Surface,”
Int. Commun. Heat Mass Transfer
,
32
, pp.
27
31
.
74.
Ahn
,
H. S.
,
Sinha
,
N.
,
Zhang
,
M.
,
Banerjee
,
D.
,
Fang
,
S. K.
, and
Baughman
,
R. H.
, 2006,
“Pool Boiling Experiments on Multiwalled Carbon Nanotube (MWCNT) Forests,”
ASME J. Heat Transfer
,
128
, pp.
1335
1342
.
75.
Launay
,
S.
,
Fedorov
,
A. G.
,
Joshi
,
Y.
,
Cao
,
A.
, and
Ajayan
,
P. M.
, 2006,
“Hybrid Micro-Nano Structured Thermal Interfaces for Pool Boiling Heat Transfer Enhancement,”
Microelectron. J.
,
37
, pp.
1158
1164
.
76.
Chen
,
R.
,
Lu
,
M. C.
,
Srinivasan
,
V.
,
Wang
,
Z.
,
Cho
,
H. H.
, and
Majumdar
,
A.
, 2009,
“Nanowires for Enhanced Boiling Heat Transfer,”
Nano Lett.
,
9
, pp.
548
553
.
77.
Li
,
S. H.
,
Furberg
,
R.
,
Toprak
,
M. S.
,
Palm
,
B.
, and
Muhammed
,
M.
, 2008,
“Nature-Inspired Boiling Enhancement by Novel Nanostructured Macroporous Surfaces,”
Adv. Funct. Mater.
,
18
, pp.
2215
2220
.
78.
Kim
,
S. T.
,
Kim
,
H. D.
,
Kim
,
H.
,
Ahn
,
H. S.
,
Jo
,
H. J.
,
Kim
,
J.
, and
Kim
,
M. H.
, 2009,
“Effects of Nano-Fluid and Surfaces With Nano Structure on the Increase of CHF,”
Exp. Therm. Fluid Sci.
,
34
, pp.
487
495
.
79.
Ahn
,
H. S.
,
Lee
,
C.
,
Kim
,
H.
,
Jo
,
H. J.
,
Kang
,
S. H.
,
Kim
,
J.
, and
Kim
,
M. H.
, 2010,
“Pool Boiling CHF Enhancement by Micro/Nanoscale Modification of Zircaloy-4 Surface,”
Nucl. Eng. Des.
,
240
, pp.
3350
3360
.
80.
Ahn
,
H. S.
,
Jo.
H. J.
,
Kang
,
S. H.
, and
Kim
,
M. H.
, 2011,
“Effect of Liquid Spreading due to Nano/Microstructures on the Critical Heat Flux During Pool Boiling,”
Appl. Phys. Lett.
,
98
, p.
071908
.
You do not currently have access to this content.