The present work demonstrates entropy generation due to laminar mixed convection of water-based nanofluid past a square cylinder in vertically upward flow. Streamline upwind Petrov–Galerkin (SUPG) based finite element method is used for numerical simulation. Nanosized copper (Cu) and alumina (Al2O3) particles suspended in water are used with Prandtl number (Pr) = 6.2. The range of nanoparticle volume fractions considered is 0–20%. Computations are carried out at a representative Reynolds number (Re) of 100 with Richardson number (Ri) range −0.5 < Ri < 0.5, both values inclusive. For both the nanofluids (Al2O3–water and Cu–water nanofluids), total entropy generation decreases with increasing nanoparticle volume fractions. It is found that for the present case of mixed convection flows with nanofluids, thermal irreversibility is much higher than that of frictional irreversibility. The Bejan number decreases with increasing nanoparticle volume fractions.

References

1.
Harlow
,
F. H.
, and
Fromm
,
J. E.
,
1964
, “
Dynamics and Heat Transfer in the von Karman Wake of a Rectangular Cylinder
,”
Phys. Fluids
,
7
(
8
), pp.
1147
1156
.10.1063/1.1711354
2.
Chang
,
K. S.
, and
Sa
,
J. Y.
,
1990
, “
The Effect of Buoyancy on Vortex Shedding in the Near Wake of a Circular Cylinder
,”
J. Fluid Mech.
,
220
, pp.
253
266
.10.1017/S002211209000324X
3.
Biswas
,
G.
,
Laschefski
,
H.
,
Mitra
,
N. K.
, and
Fiebig
,
M.
,
1990
, “
Numerical Investigation of Mixed Convection Heat Transfer in a Horizontal Channel With Built-in Square Cylinder
,”
Numer. Heat Transfer A
,
18
, pp.
173
188
.10.1080/10407789008944789
4.
Lecordier
,
J. C.
,
Browne
,
L. W. B.
,
Masson
,
S. L.
,
Dumouchel
,
F.
, and
Paranthoen
,
P.
,
2000
, “
Control of Vortex Shedding by Thermal Effect at Low Reynolds numbers
,”
Exp. Therm. Fluid Sci.
,
21
, pp.
227
237
.10.1016/S0894-1777(00)00007-8
5.
Sharma
,
A.
, and
Eswaran
,
V.
,
2004
, “
Effect of Aiding and Opposing Buoyancy on the Heat and Fluid Flow Across a Square Cylinder at Re=100
,”
Numer. Heat Transfer A
,
45
, pp.
601
624
.10.1080/10407780490277798
6.
Shi
,
J. M.
,
Gerlach
,
D.
,
Breuer
,
M.
,
Biswas
,
G.
, and
Durst
,
F.
,
2004
, “
Heating Effect on Steady and Unsteady Horizontal Laminar Flow of Air Past a Circular Cylinder
,”
Phys. Fluids
,
16
, pp.
4331
4345
.10.1063/1.1804547
7.
Niu
,
J.
,
Zhu
,
Z.
, and
Huang
,
S.
,
2006
, “
Numerical Study of Convective Heat Transfer From Two Identical Square Cylinders Submerged in a Uniform Cross Flow
,”
Numer. Heat Transfer A
,
50
, pp.
21
44
.10.1080/10407780500496547
8.
Sarkar
,
S.
,
Dalal
,
A.
, and
Biswas
,
G.
,
2011
, “
Unsteady Wake Dynamics and Heat Transfer in Forced and Mixed Convection Past a Circular Cylinder in Cross Flow for High Prandtl Numbers
,”
Int. J. Heat Mass Transfer
,
54
, pp.
3536
3551
.10.1016/j.ijheatmasstransfer.2011.03.032
9.
Choi
,
S. U. S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
Developments and Applications of Non-Newtonian Flows
,
D. A.
Siginer
and
H. P.
Wang
, eds.,
ASME
,
New York
, Vol. FED-231/MD-66, pp.
99
105
.
10.
Das
,
S. K.
,
Choi
,
S. U. S.
, and
Patel
,
H. E.
,
2006
, “
Heat Transfer in Nanofluids—A Review
,”
Heat Transfer Eng.
,
27
(
10
), pp.
3
19
.10.1080/01457630600904593
11.
Kakac
,
S.
, and
Pramuanjaroenkij
,
A.
,
2009
, “
Review of Convective Heat Transfer Enhancement With Nanofluids
,”
Int. J. Heat Mass Transfer.
,
52
, pp.
3187
3196
.10.1016/j.ijheatmasstransfer.2009.02.006
12.
Wang
,
X.-Q.
, and
Mujumdar
,
A. S.
,
2007
, “
Heat Transfer Characteristics of Nanofluids: A Review
,”
Int. J. Therm. Sci.
,
46
, pp.
1
19
.10.1016/j.ijthermalsci.2006.06.010
13.
Choi
,
S. U. S.
,
2009
, “
Nanofluids: From Vision to Reality Through Research
,”
ASME J. Heat Transfer
,
131
, p.
033106
.10.1115/1.3056479
14.
Bejan
,
A.
,
1982
,
Entropy Generation Minimization
,
CRC Press
,
Boca Raton, FL
.
15.
Bejan
,
A.
,
1979
, “
A Study of Entropy Generation in Fundamental Convective Heat Transfer
,”
ASME J. Heat Transfer
,
101
, pp.
718
725
.10.1115/1.3451063
16.
Baytas
,
A. C.
,
2000
, “
Entropy Generation for Natural Convection in an Inclined Porous Cavity
,”
Int. J. Heat Mass Transfer
,
43
, pp.
2089
2099
.10.1016/S0017-9310(99)00291-4
17.
Magherbi
,
M.
,
Abbasi
,
H.
, and
Brahim
,
A. B.
,
2003
, “
Entropy Generation at the Onset of Natural Convection
,”
Int. J. Heat Mass Transfer
,
46
, pp.
3441
3450
.10.1016/S0017-9310(03)00133-9
18.
Varol
,
Y.
,
Oztop
,
H.
, and
Koca
,
A.
,
2008
, “
Entropy Generation Due to Conjugate Natural Convection in Enclosures Bounded by Vertical Solid Walls With Different Thickness
,”
Int. Commun. Heat Mass Transfer
,
35
, pp.
648
656
.10.1016/j.icheatmasstransfer.2008.01.010
19.
Singh
,
P. K.
,
Anoop
,
K. B.
,
Sundararajan
,
T.
, and
Das
,
S. K.
,
2010
, “
Entropy Generation Due to Flow and Heat Transfer in Nanofluids
,”
Int. J. Heat Mass Transfer
,
53
, pp.
4757
4767
.10.1016/j.ijheatmasstransfer.2010.06.016
20.
Tiwari
,
R. K.
, and
Das
,
M. K.
,
2007
, “
Heat Transfer Augmentation in a Two-Sided Lid-Driven Differentially Heated Square Cavity Utilizing Nanofluids
,”
Int. J. Heat Mass Transfer
,
50
, pp.
2002
2018
.10.1016/j.ijheatmasstransfer.2006.09.034
21.
Oztop
,
H. F.
, and
Abu-Nada
,
E.
,
2008
, “
Numerical Study of Natural Convection in Partially Heated Rectangular Enclosures Filled With Nanofluids
,”
Int. J. Heat Fluid Flow
,
29
, pp.
1326
1336
.10.1016/j.ijheatfluidflow.2008.04.009
22.
Brinkman
,
H. C.
,
1952
, “
The Viscosity of Concentrated Suspensions and Solutions
,”
J. Chem. Phys.
,
20
, pp.
571
581
.10.1063/1.1700493
23.
Xuan
,
Y.
, and
Li
,
Q.
,
2003
, “
Investigation on Convective Heat Transfer and Flow Features of Nanofluids
,”
ASME J. Heat Transfer
,
125
, pp.
151
155
.10.1115/1.1532008
24.
Xuan
,
Y.
,
Li
,
Q.
, and
Hu
,
W.
,
2003
, “
Aggregation Structure and Thermal Conductivity of Nanofluids
,”
AIChE J.
,
49
, pp.
1038
1043
.10.1002/aic.690490420
25.
Xuan
,
Y.
,
Li
,
Q.
,
Zhang
,
X.
, and
Fujii
,
M.
,
2006
, “
Stochastic Thermal Transport of Nanoparticle Suspensions
,”
J. Appl. Phys.
,
100
, p.
043507
.10.1063/1.2245203
26.
Prasher
,
R.
,
Bhattacharya
,
P.
, and
Phelan
,
P. E.
,
2005
, “
Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluids)
,”
Phys. Rev. Lett.
,
94
, p.
025901
.10.1103/PhysRevLett.94.025901
27.
Koo
,
J.
, and
Kleinstreuer
,
C.
,
2004
, “
A New Thermal Conductivity Model for Nanofluids
,”
J. Nanopart. Res.
,
6
, pp.
577
588
.10.1007/s11051-004-3170-5
28.
Abu-Nada
,
E.
,
Ziyad
,
K.
,
Saleh
,
M.
, and
Ali
,
Y.
,
2008
, “
Heat Transfer Enhancement in Combined Convection Around a Horizontal Cylinder Using Nanofluids
,”
ASME J. Heat Transfer
,
130
, p.
084505
.10.1115/1.2909616
29.
Sarkar
,
S.
,
Ganguly
,
S.
, and
Biswas
,
G.
,
2012
, “
Mixed Convective Heat Transfer of Nanofluids Past a Circular Cylinder in Cross Flow in Unsteady Regime
,”
Int. J. Heat Mass Transfer
,
55
, pp.
4783
4799
.10.1016/j.ijheatmasstransfer.2012.04.046
30.
Maji
,
P. K.
, and
Biswas
,
G.
,
1999
, “
Analysis of Flow in the Spiral Casing Using a Streamline Upwinding Petrov-Galerkin Method
,”
Int. J. Numer. Methods Eng.
,
45
, pp.
147
174
.10.1002/(SICI)1097-0207(19990520)45:2<147::AID-NME581>3.0.CO;2-G
31.
Biswas
,
G.
, and
Sarkar
,
S.
,
2009
, “
Effect of Thermal Buoyancy on Vortex Shedding Past a Circular Cylinder in Cross Flow at Low Reynolds Numbers
,”
Int. J. Heat Mass Transfer
,
52
, pp.
1897
1912
.10.1016/j.ijheatmasstransfer.2008.08.034
32.
Kaluri
,
R. S.
, and
Basak
,
T.
,
2011
, “
Analysis of Entropy Generation for Distributed Heating in Processing of Materials by Thermal Convection
,”
Int. J. Heat Mass Transfer
,
54
, pp.
2578
2594
.10.1016/j.ijheatmasstransfer.2011.02.003
33.
Ilis
,
G. G.
,
Mobedi
,
M.
, and
Sunden
,
B.
,
2008
, “
Effect of Aspect Ratio on Entropy Generation in a Rectangular Cavity With Differentially Heated Vertical Walls
,”
Int. Commun. Heat Mass Transfer
,
35
, pp.
696
703
.10.1016/j.icheatmasstransfer.2008.02.002
34.
Magherbi
,
M.
,
Abbasi
,
H.
, and
Ben Brahim
,
A.
,
2003
, “
Entropy Generation at the Onset of Natural Convection
,”
Int. J. Heat Mass Transfer
,
46
, pp.
3441
3450
.10.1016/S0017-9310(03)00133-9
35.
Heris
,
S. Z.
,
Esfahany
,
M. N.
, and
Etemad
,
G.
,
2007
, “
Numerical Investigation of Nanofluid Laminar Convective Heat Transfer Through a Circular Tube
,”
Numer. Heat Transfer A
,
52
, pp.
1043
1058
.10.1080/10407780701364411
36.
Wen
,
D.
, and
Ding
,
Y.
,
2004
, “
Experimental Investigation Into Convective Heat Transfer of Nanofluids at the Entrance Region Under Laminar Flow Conditions
,”
Int. J. Heat Mass Transfer
,
47
, pp.
5181
5188
.10.1016/j.ijheatmasstransfer.2004.07.012
37.
Noie
,
S. H.
,
Heris
S. Z.
,
Kahani
,
M.
, and
Nowee
,
S. M.
,
2009
, “
Heat Transfer Enhancement Using Al2O3/Water Nanofluid in a Two-Phase Closed Thermosyphon
,”
Int. J. Heat Fluid Flow
,
30
, pp.
700
705
.10.1016/j.ijheatfluidflow.2009.03.001
You do not currently have access to this content.