Two mechanisms that enhance heat dissipation at solid-liquid interfaces are investigated from the atomistic point of view using nonequilibrium molecular dynamics simulation. The mechanisms include surface functionalization, where –OH terminated headgroups and self-assembled monolayers (SAMs) with different chain lengths are used to recondition and modify the hydrophilicity of silica surface, and vibrational matching between crystalline silica and liquid water, where three-dimensional nanopillars are grown at the interface in the direction of the heat flux with different lengths to rectify the vibrational frequencies of surface atoms. The heat dissipation is measured in terms of the thermal conductance of the solid-liquid interface and is obtained by imposing a one-dimensional heat flux along the simulation domain. A comparison with reported numerical and experimental thermal conductance measurements for similar interfaces indicates that the thermal conductance is enhanced by 1.8–3.2 times when the silica surface is reconditioned with hydrophilic groups. The enhancement is further promoted by SAMs, which results in a 20% higher thermal conductance compared with that of the fully hydroxylated silica surface. Likewise, the presence of nanopillars enhances the interface thermal conductance by 2.6 times compared with a bare surface (without nanopillars). Moreover, for different nanopillar densities, the conductance increases linearly with the length of the pillar and saturates at around 4.26 nm. Changes in the vibrational spectrum of surface atoms and water confinement effects are found to be responsible for the increase in conductance. The modification of surface vibrational states provides a tunable path to enhance heat dissipation, which can also be easily applied to other fluids and interfaces.

1.
Hu
,
M.
,
Goicochea
,
J. V.
,
Michel
,
B.
, and
Poulikakos
,
D.
, 2009, “
Thermal Rectification at Water/Functionalized Silica Interfaces
,”
Appl. Phys. Lett.
0003-6951,
95
(
15
), p.
151903
.
2.
Schoen
,
P. A.
,
Michel
,
B.
,
Curioni
,
A.
, and
Poulikakos
,
D.
, 2009, “
Hydrogen-Bond Enhanced Thermal Energy Transport at Functionalized, Hydrophobic and Hydrophilic Silica-Water Interfaces
,”
Chem. Phys. Lett.
0009-2614,
476
(
4–6
), pp.
271
276
.
3.
Carlborg
,
C. F.
,
Shiomi
,
J.
, and
Maruyama
,
S.
, 2008, “
Thermal Boundary Resistance Between Single-Walled Carbon Nanotubes and Surrounding Matrices
,”
Phys. Rev. B
0556-2805,
78
(
20
), p.
205406
.
4.
Shenogin
,
S.
,
Xue
,
L.
,
Ozisik
,
R.
,
Keblinski
,
P.
, and
Cahill
,
D. G.
, 2004, “
Role of Thermal Boundary Resistance on the Heat Flow in Carbon-Nanotube Composites
,”
J. Appl. Phys.
0021-8979,
95
(
12
), pp.
8136
8144
.
5.
Kim
,
H.
,
Bedrov
,
D.
,
Smith
,
G. D.
,
Shenogin
,
S.
, and
Keblinski
,
P.
, 2005, “
Role of Attached Polymer Chains on the Vibrational Relaxation of a C60 Fullerene in Aqueous Solution
,”
Phys. Rev. B
0556-2805,
72
(
8
), p.
085454
.
6.
Hu
,
M.
,
Keblinski
,
P.
,
Wang
,
J.
, and
Raravikar
,
N.
, 2008, “
Interfacial Thermal Conductance Between Silicon and a Vertical Carbon Nanotube
,”
J. Appl. Phys.
0021-8979,
104
(
8
), p.
083503
.
7.
Hu
,
M.
,
Keblinski
,
P.
, and
Li
,
B.
, 2008, “
Thermal Rectification at Silicon-Amorphous Polyethylene Interface
,”
Appl. Phys. Lett.
0003-6951,
92
(
21
), p.
211908
.
8.
Diao
,
J.
,
Srivastava
,
D.
, and
Menon
,
M.
, 2008, “
Molecular Dynamics Simulations of Carbon Nanotube/Silicon Interfacial Thermal Conductance
,”
J. Chem. Phys.
0021-9606,
128
(
16
), p.
164708
.
9.
Kim
,
W.
,
Wang
,
R.
, and
Majumdar
,
A.
, 2007, “
Nanostructuring Expands Thermal Limits
,”
Nanotoday
1748-0132,
2
(
1
), pp.
40
47
.
10.
Zhao
,
H.
, and
Freund
,
J. B.
, 2005, “
Lattice-Dynamical Calculation of Phonon Scattering at Ideal Si–Ge Interfaces
,”
J. Appl. Phys.
0021-8979,
97
(
2
), p.
024903
.
11.
Volz
,
S.
,
Saulnier
,
J. B.
,
Chen
,
G.
, and
Beauchamp
,
P.
, 2000, “
Molecular Dynamics of Heat Transfer in Si/Ge Superlattices
,”
High Temp. - High Press.
0018-1544,
32
, pp.
709
714
.
12.
Chen
,
Y.
,
Li
,
D.
,
Yang
,
J.
,
Wu
,
Y.
,
Lukes
,
J. R.
, and
Majumdar
,
A.
, 2004, “
Molecular Dynamics Study of the Lattice Thermal Conductivity of Kr/Ar Superlattice Nanowires
,”
Physica B
0921-4526,
349
, pp.
270
280
.
13.
Daly
,
B. C.
, and
Maris
,
H. J.
, 2002, “
Calculation of the Thermal Conductivity of Superlattices by Molecular Dynamics Simulation
,”
Physica B
0921-4526,
316–317
, pp.
247
249
.
14.
Simkin
,
M. V.
, and
Mahan
,
G. D.
, 2000, “
Minimum Thermal Conductivity of Superlattices
,”
Phys. Rev. Lett.
0031-9007,
84
(
5
), pp.
927
930
.
15.
Huxtable
,
S. T.
,
Abramson
,
A. R.
,
Tien
,
C.
,
Majumdar
,
A.
,
LaBounty
,
C.
,
Fan
,
X.
,
Zeng
,
G.
,
Bowers
,
J. E.
,
Shakouri
,
A.
, and
Croke
,
E. T.
, 2002, “
Thermal Conductivity of Si/SiGe and SiGe/SiGe Superlattices
,”
Appl. Phys. Lett.
0003-6951,
80
(
10
), pp.
1737
1739
.
16.
Chen
,
G.
, and
Neagu
,
M.
, 1997, “
Thermal Conductivity and Heat Transfer in Superlattices
,”
Appl. Phys. Lett.
0003-6951,
71
(
19
), pp.
2761
2763
.
17.
Chen
,
G.
, 1997, “
Size and Interface Effects on Thermal Conductivity of Superlattices and Periodic Thin-Film Structures
,”
ASME J. Heat Transfer
0022-1481,
119
(
2
), pp.
220
229
.
18.
Mizuno
,
S.
, and
Tamura
,
S.
, 1992, “
Theory of Acoustic-Phonon Transmission in Finite-Size Superlattice Systems
,”
Phys. Rev. B
0556-2805,
45
(
2
), pp.
734
741
.
19.
Swartz
,
E. T.
, and
Pohl
,
R. O.
, 1989, “
Thermal Boundary Resistance
,”
Rev. Mod. Phys.
0034-6861,
61
(
3
), pp.
605
668
.
20.
Costescu
,
R. M.
,
Wall
,
M. A.
, and
Cahill
,
D. G.
, 2003, “
Thermal Conductance of Epitaxial Interfaces
,”
Phys. Rev. B
0556-2805,
67
(
5
), p.
054302
.
21.
Wang
,
Z.
,
Carter
,
J. A.
,
Lagutchev
,
A.
,
Koh
,
Y. K.
,
Seong
,
N.
,
Cahill
,
D. G.
, and
Dlott
,
D. D.
, 2007, “
Ultrafast Flash Thermal Conductance of Molecular Chains
,”
Science
0036-8075,
317
(
5839
), pp.
787
790
.
22.
Wang
,
R. Y.
,
Segalman
,
R. A.
, and
Majumdar
,
A.
, 2006, “
Room Temperature Thermal Conductance of Alkanedithiol Self-Assembled Monolayers
,”
Appl. Phys. Lett.
0003-6951,
89
(
17
), p.
173113
.
23.
Ge
,
Z.
,
Cahill
,
D. G.
, and
Braun
,
P. V.
, 2006, “
Thermal Conductance of Hydrophilic and Hydrophobic Interfaces
,”
Phys. Rev. Lett.
0031-9007,
96
(
18
), p.
186101
.
24.
Luo
,
T.
, and
Lloyd
,
J. R.
, 2010, “
Non-Equilibrium Molecular Dynamics Study of Thermal Energy Transport in Au-SAM-Au Junctions
,”
Int. J. Heat Mass Transfer
0017-9310,
53
(
1–3
), pp.
1
11
.
25.
Luo
,
T.
, and
Lloyd
,
J. R.
, 2010, “
Equilibrium Molecular Dynamics Study of Lattice Thermal Conductivity/Conductance of Au-SAM-Au Junctions
,”
ASME J. Heat Transfer
0022-1481,
132
(
3
), p.
032401
.
26.
Schelling
,
P. K.
,
Phillpot
,
S. R.
, and
Keblinski
,
P.
, 2002, “
Phonon Wave-Packet Dynamics at Semiconductor Interfaces by Molecular-Dynamics Simulation
,”
Appl. Phys. Lett.
0003-6951,
80
(
14
), pp.
2484
2486
.
27.
Lorenz
,
C. D.
,
Webb
,
E. B.
,
Stevens
,
M. J.
,
Chandross
,
M.
, and
Grest
,
G. S.
, 2005, “
Frictional Dynamics of Perfluorinated Self-Assembled Monolayers on Amorphous SiO2
,”
Tribol. Lett.
1023-8883,
19
(
2
), pp.
93
98
.
28.
Lopes
,
P.
,
Murashov
,
V.
,
Tazi
,
M.
,
Demchuk
,
E.
, and
MacKerell
,
A.
, 2006, “
Development of an Empirical Force Field for Silica. Application to the Quartz-Water Interface
,”
J. Phys. Chem. B
1089-5647,
110
(
6
), pp.
2782
2792
.
29.
Jorgensen
,
W. L.
,
Chandrasekhar
,
J.
,
Madura
,
J. D.
,
Impey
,
R. W.
, and
Klein
,
M. L.
, 1983, “
Comparison of Simple Potential Functions for Simulating Liquid Water
,”
J. Chem. Phys.
0021-9606,
79
(
2
), pp.
926
935
.
30.
Ryckaert
,
J. -P.
,
Ciccotti
,
G.
, and
Berendsen
,
H. J. C.
, 1977, “
Numerical Integration of the Cartesian Equations of Motion of a System With Constraints: Molecular Dynamics of n-Alkanes
,”
J. Comput. Phys.
0021-9991,
23
(
3
), pp.
327
341
.
31.
Crozier
,
P. S.
,
Rowley
,
R. L.
, and
Henderson
,
D.
, 2001, “
Molecular-Dynamics Simulations of Ion Size Effects on the Fluid Structure of Aqueous Electrolyte Systems Between Charged Model Electrodes
,”
J. Chem. Phys.
0021-9606,
114
(
17
), pp.
7513
7517
.
32.
Jund
,
P.
, and
Jullien
,
R.
, 1999, “
Molecular Dynamics Calculation of the Thermal Conductivity of Vitreous Silica
,”
Phys. Rev. B
0556-2805,
59
(
21
), pp.
13707
13711
.
33.
Tidswell
,
I. M.
,
Ocko
,
B. M.
,
Pershan
,
P. S.
,
Wasserman
,
S. R.
,
Whitesides
,
G. M.
, and
Axe
,
J. D.
, 1990, “
X-Ray Specular Reflection Studies of Silicon Coated by Organic Monolayers (Alkylsiloxanes)
,”
Phys. Rev. B
0556-2805,
41
(
2
), pp.
1111
1128
.
34.
Kojio
,
K.
,
Ge
,
S.
,
Takahara
,
A.
, and
Kajiyama
,
T.
, 1998, “
Molecular Aggregation State of n-Octadecyltrichlorosilane Monolayer Prepared at an Air/Water Interface
,”
Langmuir
0743-7463,
14
(
5
), pp.
971
974
.
35.
Venart
,
J. E. S.
, and
Prasad
,
R. C.
, 1980, “
Thermal Conductivity of Water and Oleum
,”
J. Chem. Eng. Data
0021-9568,
25
(
3
), pp.
196
198
.
36.
Patel
,
H. A.
,
Garde
,
S.
, and
Keblinski
,
P.
, 2005, “
Thermal Resistance of Nanoscopic Liquid−Liquid Interfaces: Dependence on Chemistry and Molecular Architecture
,”
Nano Lett.
1530-6984,
5
(
11
), pp.
2225
2231
.
37.
Hu
,
M.
,
Goicochea
,
J. V.
,
Michel
,
B.
, and
Poulikakos
,
D.
, 2010, “
Water Nanoconfinement Induced Thermal Enhancement at Hydrophilic Quartz Interfaces
,”
Nano Lett.
1530-6984,
10
(
1
), pp.
279
285
.
38.
Fan
,
H.
,
Zhang
,
K.
, and
Yuen
,
M. M. F.
, 2009, “
The Interfacial Thermal Conductance Between a Vertical Single-Wall Carbon Nanotube and a Silicon Substrate
,”
J. Appl. Phys.
0021-8979,
106
(
3
), p.
034307
.
39.
Lyeo
,
H.
, and
Cahill
,
D. G.
, 2006, “
Thermal Conductance of Interfaces Between Highly Dissimilar Materials
,”
Phys. Rev. B
0556-2805,
73
(
14
), p.
144301
.
You do not currently have access to this content.