Constructal design is a method that conducts the designer toward flow (e.g., heat flux) architectures that have greater global performance. This numerical work uses this method to seek for the best geometry of a complex assembly of fins, i.e., an assembly where there is a cavity between the two branches of the T-Y-assembly of fins and two additional extended surfaces. The global thermal resistance of the assembly is minimized four times by geometric optimization subject to the following constraints: the total volume, the volume of fin material, the volume of the cavity, and the volume of the two additional extended surfaces. Larger amount of fin material improves the performance of the assembly of fins. The three times optimized global thermal resistance of the complex assembly of fins performs 32% better than the best T-Y-configuration under the same thermal and geometric conditions. The three times minimized global thermal resistance of the complex assembly of fins was correlated by power laws as a function of its corresponding optimal configurations.

1.
Bejan
,
A.
, and
Lorente
,
S.
, 2008,
Design With Constructal Theory
,
Wiley
,
Hoboken, NJ
.
2.
Bejan
,
A.
, 2007,
Advanced Engineering Thermodynamics
, 2nd ed.,
Wiley
,
New York
.
3.
Bejan
,
A.
, 2000,
Shape and Structure, From Engineering to Nature
,
Cambridge University Press
,
Cambridge, UK
.
4.
Bejan
,
A.
, and
Lorente
,
S.
, 2004, “
The Constructal Law and Thermodynamics of Flow Systems With Configuration
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
3203
3214
.
5.
Bejan
,
A.
, 2007, “
Constructal Theory of Pattern Formation
,”
Hydrology Earth Syst. Sci.
1027-5606,
11
, pp.
753
768
.
6.
Bejan
,
A.
, 2010, “
The Constructal-Law Origin of the Wheel, Size, and Skeleton in Animal Design
,”
Am. J. Phys.
0002-9505,
78
(
7
), pp.
692
699
.
7.
Bejan
,
A.
, and
Lorente
,
S.
, 2010, “
The Constructal Law of Design and Evolution in Nature
,”
Philos. Trans. R. Soc. London, Ser. B
0962-8436,
365
, pp.
1335
1347
.
8.
Kang
,
D. -H.
,
Lorente
,
S.
, and
Bejan
,
A.
, 2010, “
Constructal Dendritic Configuration for the Radiation Heating of a Solid Stream
,”
J. Appl. Phys.
0021-8979,
107
, p.
114910
.
9.
Bejan
,
A.
, and
Dan
,
N.
, 1999, “
Constructal Trees of Convective Fins
,”
ASME J. Heat Transfer
0022-1481,
121
(
3
), pp.
675
682
.
10.
Kraus
,
A. D.
, 1999, “
Developments in the Analysis of Finned Arrays
,”
Int. J. Transp. Phenom.
1028-6578,
1
, pp.
141
164
.
11.
Aziz
,
A.
, 1992, “
Optimum Dimensions of Extended Surfaces Operating in a Convective Environment
,”
Appl. Mech. Rev.
0003-6900,
45
(
5
), pp.
155
173
.
12.
Bonjour
,
J.
,
Rocha
,
L. A. O.
,
Bejan
,
A.
, and
Meunier
,
F.
, 2004, “
Dendritic Fins Optimization for a Coaxial Two-Stream Heat Exchanger
,”
Int. J. Heat Mass Transfer
0017-9310,
47
(
1
), pp.
111
124
.
13.
Matos
,
R. S.
,
Laursen
,
T. A.
,
Vargas
,
J. V. C.
, and
Bejan
,
A.
, 2004, “
Three-Dimensional Optimization of Staggered Finned Circular and Elliptic Tubes in Forced Convection
,”
Int. J. Therm. Sci.
1290-0729,
43
, pp.
477
487
.
14.
Bejan
,
A.
, and
Almogbel
,
M.
, 2000, “
Constructal T-Shaped Fins
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
2101
2115
.
15.
Lorenzini
,
G.
, and
Rocha
,
L. A. O.
, 2006, “
Constructal Design of Y-Shaped Assembly of Fins
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
4552
4557
.
16.
Lorenzini
,
G.
, and
Rocha
,
L. A. O.
, 2009, “
Constructal Design of T-Y Assembly of Fins for an Optimized Heat Removal
,”
Int. J. Heat Mass Transfer
0017-9310,
52
, pp.
1458
1463
.
17.
Kundu
,
B.
, and
Bhanja
,
D.
, 2010, “
Performance and Optimization Analysis of a Constructal T-Shaped Fin Subject to Variable Thermal Conductivity and Convective Heat Transfer Coefficient
,”
Int. J. Heat Mass Transfer
0017-9310,
53
(
1–3
), pp.
254
267
.
18.
Xie
,
Z.
,
Chen
,
L.
, and
Sun
,
F.
, 2010, “
Constructal Optimization of Twice Lever Y-Shaped Assemblies of Fins by Taking Maximum Thermal Resistance Minimization as Objective
,”
Science China Technological Sciences
,
53
(
10
), pp.
2756
2764
.
19.
Lorenzini
,
G.
, and
Moretti
,
S.
, 2007, “
A CFD Application to Optimize T-Shaped Fins: Comparisons to the Constructal Theory’s Results
,”
ASME J. Electron. Packag.
1043-7398,
129
(
3
), pp.
324
327
.
20.
Lorenzini
,
G.
, and
Moretti
,
S.
, 2009, “
A Bejan’s Constructal Theory Approach to the Overall Optimization of Heat Exchanging Finned Modules With Air in Forced Convection and Laminar Flow Condition
,”
ASME J. Heat Transfer
0022-1481,
131
(
8
), p.
081801
.
21.
Biserni
,
C.
,
Rocha
,
L. A. O.
,
Stanescu
,
G.
, and
Lorenzini
,
E.
, 2007, “
Constructal H-Shaped Cavities According to Bejan’s Theory
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
2132
2138
.
22.
Rocha
,
L. A. O.
,
Lorenzini
,
G.
,
Biserni
,
C.
, and
Cho
,
Y.
, 2010, “
Constructal Design of a Cavity Cooled by Convection
,”
Int. J. Design and Ecodynamics
,
5
(
3
), pp.
212
220
.
23.
MATLAB
, 2000,
User’s Guide
, Version 6.0.088, Release 12,
The Mathworks Inc.
,
Natick, MA
.
You do not currently have access to this content.