Heat transfer enhancement using corrugated ribbed passages is one of the common enhancement techniques inside heat exchangers. The present study investigated numerically the effect of the corrugation rib angle of attack on the fluid flow and heat transfer characteristics inside the corrugated ribbed passage. The commercial computational fluid dynamics code PHOENICS 2006 was used to perform the numerical analysis by solving the Navier–Stokes and energy equations. The experimental part of this study was used only to validate the numerical model, and a good agreement between the experimental results and the model was obtained. The flow field characteristics and heat transfer enhancement were numerically investigated for different corrugated rib angles of attack as follows: 90 deg, 105 deg, 120 deg, 135 deg, and 150 deg. The corrugation rib angle of attack has a great effect on the reversed flow zone, the flow reattachments, and the enhancement of the heat transfer coefficient through the duct. The recommended rib angle of attack, which gives the optimum thermohydraulic performance, is found to be between 135 deg and 150 deg. The value of the maximum thermohydraulic performance is about 3.6 for the 150 deg rib angle of attack at a Reynolds number equal to 10,000.

1.
Webb
,
R. L.
,
Eckert
,
E. R. G.
, and
Goldstein
,
R. J.
, 1971, “
Heat Transfer and Friction in Tubes With Repeated-Rib Roughness
,”
Int. J. Heat Mass Transfer
0017-9310,
14
, pp.
601
617
.
2.
Han
,
J. C.
,
Ou
,
S.
,
Park
,
J. S.
, and
Lei
,
C. K.
, 1989, “
Augmented Heat Transfer in Rectangular Channels of Narrow Aspect Ratios With Rib Turbulators
,”
Int. J. Heat Mass Transfer
0017-9310,
32
, pp.
1619
1630
.
3.
Lockett
,
J. F.
, and
Collins
,
M. W.
, 1990, “
Holographic Interferometry Applied to Rib-Roughness Heat Transfer in Turbulent Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
33
, pp.
2439
2449
.
4.
Han
,
J. C.
, and
Zhang
,
Y. M.
, 1992, “
High Performance Heat Transfer Ducts With Parallel Broken and V-Shaped Broken Ribs
,”
Int. J. Heat Mass Transfer
0017-9310,
35
, pp.
513
523
.
5.
Karwa
,
R.
,
Solanki
,
S. C.
, and
Saini
,
S.
, 1999, “
Heat Transfer Coefficient and Friction Factor Correlations for the Transitional Flow Regime in Rib-Roughened Rectangular Ducts
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
1597
1615
.
6.
Liou
,
T. M.
,
Jenn
,
J. H.
, and
Chen
,
S. H.
, 1993, “
Simulation and Measurement of Enhanced Turbulent Heat Transfer in Channel With Periodic Ribs on Principle Wall
,”
Int. J. Heat Mass Transfer
0017-9310,
36
(
2
), pp.
507
517
.
7.
Tsai
,
W. B.
, and
Chieng
,
C. C.
, 2000, “
Computation of Enhanced Turbulent Heat Transfer in a Channel With Periodic Ribs
,”
Int. J. Numer. Methods Heat Fluid Flow
0961-5539,
10
, pp.
47
66
.
8.
Saidi
,
A.
, and
Sundén
,
B.
, 2001, “
A Numerical Investigation of Heat Transfer Enhancement in Offset Strip Fin Heat Exchangers in Self-Sustained Oscillatory Flows
,”
Int. J. Numer. Methods Heat Fluid Flow
0961-5539,
11
, pp.
699
717
.
9.
Lee
,
K. S.
,
Kim
,
W. S.
, and
Si
,
J. M.
, 2001, “
Optimal Shape and Arrangement of Staggered Pins in the Channel of Plate Heat Exchanger
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
3223
3231
.
10.
Greiner
,
M.
,
Fischer
,
P. F.
, and
Tufo
,
H. M.
, 2002, “
Two-Dimensional Simulations of Enhanced Heat Transfer in an Intermittently Grooved Channel
,”
ASME J. Heat Transfer
0022-1481,
124
, pp.
87
99
.
11.
Onbasioglu
,
S. U.
, and
Onbaşıoğlu
,
H.
, 2004, “
On Enhancement of Heat Transfer With Ribs
,”
Appl. Therm. Eng.
1359-4311,
24
, pp.
43
57
.
12.
Prabhu
,
S. V.
,
Arora
,
N.
, and
Vedula
,
R. P.
, 2005, “
Effect of Channel Orientation and Rib Pitch-to-Height Ratio on Pressure Drop in a Rotating Square Channel With Ribs on Two Opposite Surfaces
,”
Int. J. Rotating Mach.
1023-621X,
2005
, pp.
67
76
.
13.
Liou
,
M. T.
,
Chen
,
S. H.
, and
Li
,
Y. C.
, 2005, “
Numerical Simulation of Turbulent Fluid Flow and Heat Transfer in a Ribbed Rotating Two-Pass Square Passage
,”
Int. J. Rotating Mach.
1023-621X,
2
, pp.
152
160
.
14.
Kanaris
,
A. G.
,
Mouza
,
A. A.
, and
Paras
,
S. V.
, 2005, “
Flow and Heat Transfer in Narrow Channels With Corrugated Walls a CFD Code Application
,”
Trans. Inst. Chem. Eng., Part A
0263-8762,
83
(
5
), pp.
460
468
.
15.
Lu
,
B.
, and
Jiang
,
P. -X.
, 2006, “
Experimental and Numerical Investigation of Convection Heat Transfer in a Rectangular Channel With Angled Ribs
,”
Exp. Therm. Fluid Sci.
0894-1777,
30
, pp.
513
521
.
16.
Kamali
,
R.
, and
Binesh
,
A. R.
, 2008, “
The Importance of Rib Shape Effects on the Local Heat Transfer and Flow Friction Characteristics of Square Ducts With Ribbed Internal Surfaces
,”
Int. Commun. Heat Mass Transfer
0735-1933,
35
, pp.
1032
1040
.
17.
Amro
,
M.
,
Weiganda
,
B.
,
Poser
,
R.
, and
Schnieder
,
M.
, 2007, “
An Experimental Investigation of the Heat Transfer in a Ribbed Triangular Cooling Channel
,”
Int. J. Therm. Sci.
1290-0729,
46
, pp.
491
500
.
18.
Hoettiba
,
R.
,
Mohamed
,
A. M. I.
,
Morad
,
K.
, and
Mikhael
,
N. N.
, 2009, “
Experimental Investigation and Numerical Model Validation of the Heat Transfer and Fluid Flow Characteristics Through a Corrugated Ribbed Passage
,”
Port-Said Engineering Research Journal PSERJ
,
13
(
1
), pp.
24
38
.
19.
Hoettiba
,
R.
,
Mohamed
,
A. M. I.
,
Morad
,
K.
, and
Mikhael
,
N. N.
, 2009, “
Numerical Investigation of the Effect of the Corrugation Pitch and Height on the Fluid Flow and Heat Transfer Characteristics Inside Corrugated Ribbed Passage
,”
Port-Said Engineering Research Journal PSERJ
,
13
(
2
), pp.
211
229
.
20.
Han
,
J. C.
, 1983, “
Heat Transfer and Pressure Drop in Blade Cooling Channels With Turbulence Promoters
,” Texas A&M University College Station, TX, prepared for the U.S. Army Research and Technology Laboratory, under NASA Grant No. NAG3-311.
21.
Koehler
,
W. J.
,
Patanker
,
S. V.
, and
Ibele
,
W. E.
, 1991, “
Numerical Prediction of Turbulent Oscillating Flow and Associated Heat Transfer
,” Lewis Research Center, National Aeronautics and Space Administration, NAG3-1024.
22.
Rokni
,
M.
, and
Gataski
,
T. B.
, 1999, “
Predicting Turbulent Convective Heat Transfer in Three Dimensional Passage Flows
,”
NASA
, Technical Memorandum No. 209843, pp.
1
19
.
23.
Jonas
,
B.
, 2002, “
Turbulence Modeling for Internal Cooling of Gas-Turbine Blades
,” Ph.D. thesis, Department of Thermo and Fluid Dynamics, Chalmers University of Technology, Goteborg, Sweden.
24.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
Washington, DC
.
25.
Utyuzhnikov
,
S. V.
, 2005, “
Generalized Wall Functions and Their Application for Simulation of Turbulent Flows
,”
Int. J. Numer. Methods Fluids
0271-2091,
47
, pp.
1323
1328
.
26.
van Male
,
P.
,
de Croon
,
M. H. J. M.
,
Tiggelaar
,
R. M.
,
van den Berg
,
A.
, and
Schouten
,
J. C.
, 2004, “
Heat and Mass Transfer in a Square Microchannel With Asymmetric Heating
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
87
99
.
27.
Rubini
,
P. A.
, 1992, “
Multigrid Acceleration of Three Dimensional Turbulent-Variable Density Flows
,”
Numer. Heat Transfer, Part B
1040-7790,
22
, pp.
163
177
.
28.
Gnielinski
,
V.
, 1975, “
Neue Gleischungen fuer den waerme und stoffuebergang in turbulent durchstroemten Rohren und Kanaelen
,”
Forsch. Im Ing.-Wes.
,
41
(
1
), pp.
8
16
.
You do not currently have access to this content.