The thermal vibration phenomenon occurring in the dual-phase-lagging heat conduction violates the second law of thermodynamics under the local equilibrium assumption. In order to resolve this paradox, two types of the extended irreversible thermodynamics are developed in the present work, which make the dual-phase-lagging heat conduction model compatible with the second law of thermodynamics. It is also shown that these extended irreversible thermodynamics can give rise to the Maxwell model for the viscoelastic fluid flow.

1.
Cahill
,
D. G.
,
Ford
,
W. K.
,
Goodson
,
K. E.
,
Mahan
,
G. D.
,
Majumdar
,
A.
,
Maris
,
H. J.
,
Merlin
,
R.
, and
Phillpot
,
S. R.
, 2003, “
Nanoscale Thermal Transport
,”
J. Appl. Phys.
0021-8979,
93
, pp.
793
818
.
2.
Joseph
,
D. D.
, and
Preziosi
,
L.
, 1989, “
Heat Waves
,”
Rev. Mod. Phys.
0034-6861,
61
, pp.
41
73
.
3.
Tzou
,
D. Y.
, 1995, “
A Unified Field Approach for Heat Conduction From Micro- to Macro-Scales
,”
ASME J. Heat Transfer
0022-1481,
117
, pp.
8
16
.
4.
Tzou
,
D. Y.
, 1995, “
The Generalized Lagging Response in Small-Scale and High-Rate Heating
,”
Int. J. Heat Mass Transfer
0017-9310,
38
, pp.
3231
3240
.
5.
Tzou
,
D. Y.
, 1995, “
Experimental Support for the Lagging Response in Heat Propagation
,”
J. Thermophys. Heat Transfer
0887-8722,
9
, pp.
686
693
.
6.
Tzou
,
D. Y.
, 1996,
Macro- to Microscale Heat Transfer: The Lagging Behavior
,
Taylor & Francis
,
Washington, DC
.
7.
Brorson
,
S. D.
,
Fujimoto
,
J. G.
, and
Ippen
,
E. P.
, 1987, “
Femtosecond Electronic Heat-Transport Dynamics in Thin Gold Films
,”
Phys. Rev. Lett.
0031-9007,
59
, pp.
1962
1965
.
8.
Boyd
,
I. W.
, 1989,
Laser Processing of Thin Films and Microstructures
,
Springer
,
New York
.
9.
Qiu
,
T. Q.
, and
Tien
,
C. L.
, 1993, “
Heat Transfer Mechanisms During Short-Pulse Laser Heating of Metals
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
835
841
.
10.
Jou
,
D.
,
Casas-Vázquez
,
J.
, and
Lebon
,
G.
, 2003,
Extended Irreversible Thermodynamics
,
Springer
,
Berlin
.
11.
Jou
,
D.
,
Casas-Vázquez
,
J.
, and
Lebon
,
G.
, 1999, “
Extended Irreversible Thermodynamics Revisited (1988-98)
,”
Rep. Prog. Phys.
0034-4885,
62
, pp.
1035
1142
.
12.
Cattaneo
,
C.
, 1958, “
A Form of Heat Conduction Equation Which Eliminates the Paradox of Instantaneous Propagation
,”
Compt. Rend.
0001-4036,
247
, pp.
431
433
.
13.
Vernotte
,
P.
, 1961, “
Some Possible Complications in the Phenomena of Thermal Conduction
,”
Compt. Rend.
0001-4036,
252
, pp.
2190
2191
.
14.
Guyer
,
R. A.
, and
Krumhansl
,
J. A.
, 1966, “
Solution of the Linearized Boltzmann Equation
,”
Phys. Rev.
0031-899X,
148
, pp.
766
778
.
15.
Chryssolouris
,
G.
, 1991,
Laser Machining, Theory and Practice
,
Springer
,
New York
.
16.
Alexander
,
D. E.
,
Was
,
G. S.
, and
Rehn
,
L. E.
, 1990, “
Beam-Solid Interactions: Physical Phenomena
,”
MRS Symposia Proceedings No. 157
,
J. A.
Knapp
,
P.
Borgesen
, and
R. A.
Zuhr
, eds.,
Materials Research Society
,
Pittsburgh
, pp.
155
160
.
17.
Koshland
,
D. E.
, 1991, “
Engineering a Small World From Atomic Manipulation to Microfabrication
,”
Science
0036-8075,
254
, pp.
1300
1342
.
18.
Narayan
,
J.
,
Godbole
,
V. P.
, and
White
,
C. W.
, 1991, “
Laser Method for Synthesis and Processing of Continuous Diamond Films on Nondiamond Substrates
,”
Science
0036-8075,
252
, pp.
416
418
.
19.
Hader
,
M.
, and
Al-Nimr
,
M. A.
, 2002, “
Thermal Behavior of a Thin Layer Carrying Pulsating Signals in the Dual-Phase-Lag Model
,”
Heat Transfer Eng.
0145-7632,
23
(
3
), pp.
35
41
.
20.
Naji
,
M.
, and
Al-Nimr
,
M. A.
, 2002, “
Thermal Behavior of a Porous Electric Heater in the Dual-Phase-Lag Model
,”
Appl. Therm. Eng.
1359-4311,
22
(
4
), pp.
449
457
.
21.
Odat
,
M.
,
Al-Nimr
,
M. A.
, and
Hamdan
,
M.
, 2002, “
Superconductors Thermal Stability Under the Effect of the Dual-Phase-Lag Heat Conduction Model
,”
Int. J. Thermophys.
0195-928X,
23
(
3
), pp.
855
868
.
22.
Hader
,
M.
,
Al-Nimr
,
M. A.
, and
Abu Nabah
,
B.
, 2002, “
The Dual-Phase-Lag Heat Conduction Model in Thin Slab Under Fluctuating Volumetric Thermal Disturbance
,”
Int. J. Thermophys.
0195-928X,
23
(
6
), pp.
1669
1680
.
23.
Al-Odat
,
M.
, and
Al-Nimr
,
M. A.
, 2004, “
Thermal Stability of Composite Superconducting Tape Under Effect of a Two-Dimensional Dual-Phase-Lag Heat Conduction Model
,”
Heat Mass Transfer
0947-7411,
40
, pp.
211
217
.
24.
Al-Odat
,
M.
, and
Al-Nimr
,
M.
, 2003, “
Thermal Stability of an Isotropic Super Conducting Wires/Cylinders Under the Effect of Dual-Phase-Lag Heat Conduction Model
,”
Jpn. J. Appl. Phys., Part 1
0021-4922,
42
, pp.
6853
6858
.
25.
Al-Huniti
,
N. S.
, and
Al-Nimr
,
M. A.
, 2004, “
Thermo Elastic Behavior of a Composite Slab Under a Rapid Dual-Phase-Lag Heating
,”
J. Therm. Stresses
0149-5739,
27
, pp.
607
623
.
26.
Al-Nimr
,
M. A.
,
Naji
,
M.
, and
Abdallah
,
R. I.
, 2004, “
Thermal Behavior of a Multi-Layered Thin Slab Carrying Pulsating Signals Under the Effect of the Dual-Phase-Lag Heat Conduction Model
,”
Int. J. Thermophys.
0195-928X,
25
(
3
), pp.
949
966
.
27.
Khadrawi
,
A. F.
,
Al-Nimr
,
M. A.
, and
Tahat
,
M.
, 2004, “
Dual-Phase-Lag Heat Conduction Model in Thin Slab Under the Effect of a Moving Heating Source
,”
Int. Commun. Heat Mass Transfer
0735-1933,
31
(
7
), pp.
1015
1026
.
28.
Wang
,
L. Q.
,
Xu
,
M. T.
, and
Zhou
,
X. S.
, 2001, “
Well-Posedness and Solution Structure of Dual-Phase-Lagging Heat Conduction
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
1659
1669
.
29.
Wang
,
L. Q.
, and
Xu
,
M. T.
, 2002, “
Well-Posed Problem of Dual-Phase-Lagging Heat Conduction Equation in 2D and 3D Regions
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
1165
1171
.
30.
Xu
,
M. T.
, and
Wang
,
L. Q.
, 2002, “
Thermal Oscillation and Resonance in Dual-Phase-Lagging Heat Conduction
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
1055
1061
.
31.
Vadasz
,
P.
, 2005, “
Absence of Oscillations and Resonance in Porous Media Dual-Phase-Lagging Fourier Heat Conduction
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
307
314
.
32.
Vadasz
,
P.
, 2005, “
Lack of Oscillations in Dual-Phase-Lagging Heat Conduction for a Porous Slab Subject to Imposed Heat Flux and Temperature
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
2822
2828
.
33.
Vadasz
,
P.
, 2005, “
Explicit Conditions for Local Thermal Equilibrium in Porous Media Heat Conduction
,”
Transp. Porous Media
0169-3913,
59
, pp.
341
355
.
34.
Vadasz
,
P.
, 2006, “
Exclusion of Oscillations in Heterogeneous and Bi-Composite Media Thermal Conduction
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
4886
4892
.
35.
Tzou
,
D. Y.
, 1992, “
Damping and Resonance Characteristic of Thermal Wave
,”
ASME J. Appl. Mech.
0021-8936,
59
, pp.
862
866
.
36.
Xu
,
M. T.
, and
Wang
,
L. Q.
, 2005, “
Dual-Phase-Lagging Heat Conduction Based on Boltzmann Transport Equation
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
5616
5624
.
37.
Barletta
,
A.
, and
Zanchini
,
E.
, 1997, “
Hyperbolic Heat Conduction and Local Equilibrium: A Second Law Analysis
,”
Int. J. Heat Mass Transfer
0017-9310,
40
(
5
), pp.
1007
1016
.
38.
Al-Nimr
,
M. A.
, and
Alkam
,
M.
, 2003, “
Overshooting Phenomenon in the Hyperbolic Al Microscopic Heat Conduction Model
,”
Int. J. Thermophys.
0195-928X,
24
(
2
), pp.
577
583
.
39.
Taitel
,
Y.
, 1972, “
On the Parabolic, Hyperbolic and Discrete Formulation of the Heat Conduction Equation
,”
Int. J. Heat Mass Transfer
0017-9310,
15
, pp.
369
371
.
40.
Prasad
,
V. S.
, and
Das
,
S. K.
, 2002, “
An Experimental and Theoretical Investigation Into the Hyperbolic Nature of Axial Dispersion in Packed Beds
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
3681
3688
.
41.
Roetzel
,
W.
, and
Das
,
P. S.
, 2003, “
Experiment and Analysis of Non-Fourier Conduction in Materials With Non-Homogeneous Inner Structure
,”
Int. J. Therm. Sci.
1290-0729,
42
, pp.
541
552
.
42.
Shiomi
,
J.
, and
Maruyama
,
S.
, 2006, “
Non-Fourier Heat Conduction in a Single-Walled Carbon Nanotube: Classical Molecular Dynamics Simulations
,”
Phys. Rev. B
0556-2805,
73
, p.
205420
.
43.
Al-Nimr
,
M. A.
,
Naji
,
M.
, and
Arpaci
,
V.
, 2000, “
Non-Equilibrium Entropy Production Under the Effect of Dual-Phase-Lag Heat Conduction Model
,”
ASME J. Heat Transfer
0022-1481,
122
, pp.
217
223
.
44.
Al-Nimr
,
M. A.
, and
Naji
,
M.
, 2000, “
On the Phase-Lag Effect on the Nonequilibrium Entropy Production
,”
Nanoscale Microscale Thermophys. Eng.
1556-7265,
4
(
4
), pp.
231
243
.
45.
Rubin
,
M. B.
, 1992, “
Hyperbolic Heat Conduction and the Second Law
,”
Int. J. Eng. Sci.
0020-7225,
30
(
11
), pp.
1665
1676
.
46.
Batra
,
R. C.
, 1974, “
A Thermodynamic Theory of Rigid Heat Conduction
,”
Arch. Ration. Mech. Anal.
0003-9527,
53
, pp.
359
365
.
47.
Müller
,
I.
, 1971, “
The Coldness, A Universal Function in Thermodynamic Bodies
,”
Arch. Ration. Mech. Anal.
0003-9527,
41
, pp.
319
332
.
48.
Serdyukov
,
S. I.
, 1997, “
A New Version of Extended Irreversible Thermodynamics: The Principle Postulate and Hyperbolic Equations of Thermal Diffusion
,”
Russ. J. Phys. Chem.
0036-0244,
71
, pp.
1412
1415
.
49.
Serdyukov
,
S. I.
, 2001, “
A New Version of Extended Irreversible Thermodynamics and Dual-Phase-Lag Model in Heat Transfer
,”
Phys. Lett. A
0375-9601,
281
, pp.
16
20
.
50.
Christov
,
C. I.
, and
Jordan
,
P. M.
, 2005, “
Heat Conduction Paradox Involving Second-Sound Propagation in Moving Media
,”
Phys. Rev. Lett.
0031-9007,
94
, p.
154301
.
51.
Cheng
,
L.
,
Xu
,
M. T.
, and
Wang
,
L. Q.
, 2008, “
Single- and Dual-Phase-Lagging Heat Conduction Models in Moving Media
,”
ASME J. Heat Transfer
0022-1481,
130
, p.
121302
.
52.
Cheng
,
L.
,
Xu
,
M. T.
, and
Wang
,
L. Q.
, 2008, “
Thermal Vibration Phenomenon of Single Phase Lagging Heat Conduction and Its Thermodynamic Basis
,”
Chin. Sci. Bull.
1001-6538,
53
(
22
), pp.
3597
3602
.
53.
Müller
,
I.
, and
Ruggeri
,
T.
, 1993,
Extended Thermodynamics
,
Springer
,
New York
.
54.
1992,
Extended Thermodynamic Systems
,
S.
Sieniutycz
and
P.
Salamon
, eds.,
Taylor & Francis
,
New York
.
55.
Jou
,
D.
, and
Criado-Sancho
,
M.
, 1998, “
Thermodynamic Stability and Temperature Overshooting in Dual-Phase-Lag Heat Transfer
,”
Phys. Lett. A
0375-9601,
248
, pp.
172
178
.
You do not currently have access to this content.