In this paper conduction-radiation controlled solidification process of semitransparent materials was numerically analyzed. New approach in this kind of simulations, which is based on the fixed grid front tracking method combined with the immersed boundary technique, was adopted and examined. The presented method enables accurate dealing with solidification processes of semitransparent materials which have different optical and thermophysical properties of solid and liquid phases as well as with absorption, emission, and reflection of the thermal radiation at the solid-liquid interface without applying moving mesh methods. The proposed numerical approach was examined by solving several simplified thermal radiation problems with complex fixed and moving boundaries both in two-dimensional and axisymmetric spaces. For some of them the accuracy of obtained results was proved by comparing with reference works, other showed capabilities of the proposed method. For simplified solidification processes of semitransparent materials three configurations of optical properties, i.e., semitransparent solid phase and opaque liquid phase, opaque solid phase and semitransparent liquid phase, and semitransparent both phases were considered. The interface between solid and liquid phases was treated to be opaque, absorbing, emitting, and reflecting diffusely the thermal radiation. Results of the numerical simulations show that the presented numerical approach works well in this kind of problems and is promising for simulation of real solidification processes of semitransparent materials.

1.
Prisniakov
,
V. F.
, and
Gabrinets
,
V. A.
, 1995, “
The New Conceptions for Design of Thermal Energy Storage for Solar Dynamic Plants
,”
Acta Astronaut.
0094-5765,
37
, pp.
7
10
.
2.
Tsukada
,
T.
,
Kakinoki
,
K.
,
Hozawa
,
M.
, and
Imaishi
,
N.
, 1995, “
Effect of Internal Radiation Within Crystal and Melt on Czochralski Crystal Growth of Oxide
,”
Int. J. Heat Mass Transfer
0017-9310,
38
, pp.
2707
2714
.
3.
Abrams
,
M.
, and
Viskanta
,
R.
, 1974, “
The Effect of Radiative Heat Transfer Upon the Melting and Solidification of Semitransparent Crystals
,”
ASME J. Heat Transfer
0022-1481,
96
, pp.
184
190
.
4.
Chan
,
S. H.
,
Cho
,
D. H.
, and
Kocamustafaogullari
,
G.
, 1983, “
Melting and Solidification With Internal Radiative Transfer—A Generalized Phase Change Model
,”
Int. J. Heat Mass Transfer
0017-9310,
26
, pp.
621
633
.
5.
Dorsey
,
N. E.
, 1968,
Properties of Ordinary Water Substance
,
Hafner
,
New York
.
6.
Knight
,
C. A.
, 1967,
The Freezing of Supercooled Liquids
,
Van Nostrand
,
Princeton, NJ
.
7.
Yao
,
C.
,
Chung
,
B. T. F.
, and
Wang
,
G. -X.
, 2002, “
Mushy Zone Equilibrium Solidification of Semitransparent Layer Subject to Radiative and Convective Cooling
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
2397
2405
.
8.
Mishra
,
S. C.
,
Behera
,
N. C.
,
Garg
,
A. K.
, and
Mishra
,
A.
, 2008, “
Solidification of a 2-D Semitransparent Medium Using the Lattice Boltzmann Method and the Finite Volume Method
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
4447
4460
.
9.
Łapka
,
P.
, and
Furmański
,
P.
, 2008, “
Numerical Modeling of Solidification Processes of Semitransparent Materials Using the Enthalpy and the Finite Volume Methods
,”
Heat Mass Transfer
0947-7411,
44
, pp.
937
957
.
10.
Yao
,
C.
,
Wang
,
G. -X.
, and
Chung
,
B. T. F.
, 2000, “
Nonequilibrium Planar Interface Model for Solidification of Semitransparent Radiating Materials
,”
J. Thermophys. Heat Transfer
0887-8722,
14
, pp.
297
304
.
11.
Wang
,
G. -X.
,
Yao
,
C.
, and
Chung
,
B. T. F.
, 2003, “
Thermal Analysis on Planar Interface Stability in Solidification of Semitransparent Materials
,”
J. Thermophys. Heat Transfer
0887-8722,
17
, pp.
193
198
.
12.
Sokolov
,
P.
,
Ibrahim
,
M.
, and
Kerslake
,
T.
, 2000, “
Computational Heat-Transfer Modeling of Thermal Energy Storage Canisters for Space Applications
,”
J. Spacecr. Rockets
0022-4650,
37
, pp.
265
272
.
13.
Yimer
,
B.
, 2000, “
Multi-Dimensional Solidification With Internal Radiation and Temperature Dependent Properties
,”
Energy Convers. Manage.
0196-8904,
41
, pp.
343
352
.
14.
Brandon
,
S.
, and
Derby
,
J. J.
, 1991, “
Internal Radiative Transport in the Vertical Bridgman Growth of Semitransparent Crystals
,”
J. Cryst. Growth
0022-0248,
110
, pp.
481
500
.
15.
Lan
,
C. W.
, and
Tu
,
C. Y.
, 2001, “
Three-Dimensional Simulation of Facet Formation and the Coupled Heat and Segregation in Bridgman Growth of Oxide Crystals
,”
J. Cryst. Growth
0022-0248,
233
, pp.
523
536
.
16.
Lan
,
C. W.
, and
Chen
,
C.
, 2007, “
Dynamic Three-Dimensional Simulation of Facet Formation and Segregation in Bridgman Crystal Growth
,”
J. Cryst. Growth
0022-0248,
303
, pp.
287
296
.
17.
Kobayashi
,
M.
,
Hagino
,
T.
,
Tsukada
,
T.
, and
Hozawa
,
M.
, 2002, “
Effect of Internal Radiative Heat Transfer on Interface Inversion in Chochralski Crystal Growth of Oxides
,”
J. Cryst. Growth
0022-0248,
235
, pp.
258
270
.
18.
Yuferev
,
V. S.
,
Budenkova
,
O. N.
,
Vasiliev
,
M.
,
Rukolaine
,
S. A.
,
Shlegel
,
V. N.
,
Vasiliev
,
Ya. V.
, and
Zhmakin
,
A. I.
, 2003, “
Variation of Solid-Liquid Interface in the BGO Low Thermal Gradients Cz Growth for Diffuse and Specular Crystal Side Surface
,”
J. Cryst. Growth
0022-0248,
253
, pp.
383
397
.
19.
Jing
,
C. J.
,
Hayashi
,
A.
,
Kobayashi
,
M.
,
Tsukada
,
T.
,
Hozawa
,
M.
,
Imaishi
,
N.
,
Shimamura
,
K.
, and
Ichinose
,
N.
, 2003, “
Effect of Internal Radiative Heat Transfer on Spoke Pattern on Oxide Melt Surface in Czochralski Crystal Growth
,”
J. Cryst. Growth
0022-0248,
259
, pp.
367
373
.
20.
Jing
,
C. J.
,
Ihara
,
S.
,
Sugioka
,
K. -I.
,
Tsukada
,
T.
,
Kobayashi
,
M.
,
Mito
,
M.
, and
Yokoyama
,
C.
, 2007, “
Global Analysis of Heat Transfer Considering Three-Dimensional Unsteady Melt Flow in CZ Crystal Growth of Oxide
,”
J. Cryst. Growth
0022-0248,
307
, pp.
235
244
.
21.
Lee
,
H.
, and
Pearlstein
,
A. J.
, 2001, “
Interface Shape and Thermally-Driven Convection in Vertical Bridgman Growth of Gallium Selenide: A Semiconductor With Anisotropic Solid-Phase Thermal Conductivity
,”
ASME J. Heat Transfer
0022-1481,
123
, pp.
729
740
.
22.
Udaykumar
,
H.
,
Mittal
,
R.
, and
Shyy
,
W.
, 1999, “
Computation of Solid-Liquid Phase Fronts in the Sharp Interface Limit on Fixed Grids
,”
J. Comput. Phys.
0021-9991,
153
, pp.
535
574
.
23.
Ye
,
T.
,
Mittal
,
R.
,
Udaykumar
,
H. S.
, and
Shyy
,
W.
, 1999, “
An Accurate Cartesian Grid Method for Viscous Incompressible Flow With Complex Immersed Boundaries
,”
J. Comput. Phys.
0021-9991,
156
, pp.
209
240
.
24.
Byun
,
Y. D.
,
Baek
,
S. W.
, and
Kim
,
M. Y.
, 2003, “
Investigation of Radiative Heat Transfer in Complex Geometries Using Blocked-Off, Multiblock, and Embedded Boundary Treatments
,”
Numer. Heat Transfer, Part A
1040-7782,
43
, pp.
807
825
.
25.
Kim
,
T. -K.
, and
Lee
,
H.
, 1988, “
Effect of Anisotropic Scattering on Radiative Heat Transfer in Two-Dimensional Rectangular Enclosures
,”
Int. J. Heat Mass Transfer
0017-9310,
31
, pp.
1711
1721
.
26.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
, 2007,
An Introduction to Computational Fluid Dynamics. The Finite Volume Method
,
Pearson
,
Harlow, UK
.
27.
Raithby
,
G. D.
, and
Chui
,
E.
, 1990, “
A Finite-Volume Method for Predicting a Radiant Heat Transfer in Enclosures With Participating Media
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
415
423
.
28.
Murthy
,
J. Y.
, and
Mathur
,
S. R.
, 1998, “
Radiative Heat Transfer in Axisymmetric Geometries Using Unstructured Finite-Volume Method
,”
Numer. Heat Transfer, Part B
1040-7790,
33
, pp.
397
416
.
29.
Baek
,
M. Y.
,
Kim
,
M. Y.
, and
Kim
,
J. S.
, 1998, “
Nonorthogonal Finite-Volume Solutions of Radiative Heat Transfer in a Three-Dimensional Enclosure
,”
Numer. Heat Transfer, Part B
1040-7790,
34
, pp.
419
437
.
30.
Murthy
,
J. Y.
, and
Mathur
,
S. R.
, 2000, “
A Finite-Volume Scheme for Radiative Heat Transfer in Semitransparent Media
,”
Numer. Heat Transfer, Part B
1040-7790,
37
, pp.
25
43
.
31.
Swaminathan
,
C. R.
, and
Voller
,
V. R.
, 1992, “
A General Enthalpy Method for Modelling Solidification Processes
,”
Metall. Trans. B
0360-2141,
23
, pp.
651
663
.
32.
Salah
,
M. B.
,
Askri
,
F.
,
Jemni
,
A.
, and
Nasrallah
,
S. B.
, 2006, “
Numerical Analyses of Radiative Heat Transfer in Any Arbitrarily-Shaped Axisymmetric Enclosures
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
97
, pp.
395
414
.
33.
Mishra
,
S. C.
,
Lankadasu
,
A.
, and
Beronov
,
K. N.
, 2005, “
Application of the Lattice Boltzmann Method for Solving Energy Equation of a 2-D Transient Conduction-Radiation Problem
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
3648
3659
.
You do not currently have access to this content.