The radiative properties of numerically generated fractal soot aggregates were studied using the numerically accurate generalized multisphere Mie-solution method. The fractal aggregates investigated in this study contain 10–600 primary particles of 30 nm in diameter. These fractal aggregates were numerically generated using a combination of the particle-cluster and cluster-cluster aggregation algorithms with fractal parameters representing flame-generated soot. Ten different realizations were obtained for a given aggregate size measured by the number of primary particles. The wavelength considered is 532 nm, and the corresponding size parameter of primary particle is 0.177. Attention is paid to the effect of different realizations of a fractal aggregate with identical fractal dimension, prefactor, primary particle diameter, and the number of primary particles on its orientation-averaged radiative properties. Most properties of practical interest exhibit relatively small variation with aggregate realization. However, other scattering properties, especially the vertical-horizontal differential scattering cross section, are very sensitive to the variation in geometrical configuration of primary particles. Orientation-averaged radiative properties of a single aggregate realization are not always sufficient to represent the properties of random-oriented ensemble of fractal aggregates.

1.
Snelling
,
D. R.
,
Liu
,
F.
,
Smallwood
,
G. J.
, and
Gülder
,
Ö. L.
, 2004, “
Determination of the Soot Absorption Function and Thermal Accommodation Coefficient Using Low-Fluence LII in a Laminar Coflow Ethylene Diffusion Flame
,”
Combust. Flame
0010-2180,
136
, pp.
180
190
.
2.
Liu
,
F.
,
Yang
,
M.
,
Hill
,
F. A.
,
Snelling
,
G. J.
, and
Smallwood
,
G. J.
, 2006, “
Influence of Polydisperse Distributions of Both Primary Particle and Aggregate Size on Soot Temperature in Low-Fluence LII
,”
Appl. Phys. B: Lasers Opt.
0946-2171,
83
, pp.
383
395
.
3.
Köylü
,
Ü. Ö.
, 1997, “
Quantitative Analysis of In Situ Optical Diagnostics for Inferring Particle/Aggregate Parameters in Flames: Implications for Soot Surface Growth and Total Emissivity
,”
Combust. Flame
0010-2180,
109
, pp.
488
500
.
4.
Yang
,
B.
, and
Köylü
,
Ü. Ö.
, 2005, “
Soot Processes in a Strongly Radiating Turbulent Flame From Laser Scattering/Extinction Experiments
,”
J. Quant. Spectr. Rad. Trans.
,
93
, pp.
289
299
.
5.
Megaridis
,
C. M.
, and
Dobbins
,
R. A.
, 1990, “
Morphological Description of Flame-Generated Materials
,”
Combust. Sci. Technol.
0010-2202,
71
, pp.
95
109
.
6.
Faeth
,
G. M.
, and
Köylü
,
Ü. Ö.
, 1995, “
Soot Morphology and Optical Properties in Nonpremixed Turbulent Flame Environments
,”
Combust. Sci. Technol.
0010-2202,
108
, pp.
207
229
.
7.
Dalzell
,
W. H.
,
Williams
,
G. C.
, and
Hottel
,
H. C.
, 1970, “
A Light-Scattering Method for Soot Concentration Measurements
,”
Combust. Flame
0010-2180,
14
, pp.
161
170
.
8.
Köylü
,
Ü. Ö.
, and
Faeth
,
G. M.
, 1993, “
Radiative Properties of Flame-Generated Soot
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
409
417
.
9.
Köylü
,
Ü. Ö.
, and
Faeth
,
G. M.
, 1994, “
Optical Properties of Overfire Soot in Buoyant Turbulent Diffusion Flames at Long Residence Time
,”
ASME J. Heat Transfer
0022-1481,
116
, pp.
152
159
.
10.
Draine
,
B. T.
, and
Flatau
,
P. J.
, 1994, “
Discrete-Dipole Approximation for Scattering Calculations
,”
Opt. Soc. Am
,
11
, pp.
1491
1499
.
11.
Mulholland
,
G. W.
,
Bohren
,
C. F.
, and
Fuller
,
K. A.
, 1994, “
Light Scattering by Agglomerates: Coupled Electric and Magnetic Dipole Method
,”
Langmuir
0743-7463,
10
, pp.
2533
2546
.
12.
Mishchenko
,
M. I.
, 1991, “
Light Scattering by Randomly Oriented Axially Symmetric Particles
,”
J. Opt. Soc. Am. A
0740-3232,
8
, pp.
871
882
.
13.
Khlebtsov
,
N. G.
, 1992, “
Orientational Averaging of Light-Scattering Observables in the T-Matrix Approach
,”
Appl. Opt.
0003-6935,
31
, pp.
5359
5365
.
14.
Xu
,
Y. -L.
, 1995, “
Electromagnetic Scattering by an Aggregate of Spheres
,”
Appl. Opt.
0003-6935,
34
, pp.
4573
4588
.
15.
Xu
,
Y. -L.
, 1997, “
Electromagnetic Scattering by an Aggregate of Spheres: Far Field
,”
Appl. Opt.
0003-6935,
36
, pp.
9496
9508
.
16.
Riefler
,
N.
,
di Stasio
,
S.
, and
Wriedt
,
T.
, 2004, “
Structural Analysis of Clusters Using Configurational and Orientational Averaging in Light Scattering Analysis
,”
J. Quant. Spectr. Rad. Trans.
,
89
, pp.
323
342
.
17.
Kolokolova
,
L.
,
Kimura
,
H.
,
Ziegler
,
K.
, and
Mann
,
I.
, 2006, “
Light-Scattering Properties of Random-Oriented Aggregates: Do They Represent the Properties of an Ensemble of Aggregates?
,”
J. Quant. Spectr. Rad. Trans.
,
100
, pp.
199
206
.
18.
Liu
,
L.
, and
Mishchenko
,
M. I.
, 2005, “
Effects of Aggregation on Scattering and Radiative Properties of Soot Aerosols
,”
J. Geophys. Res.
0148-0227,
110
, p.
D11211
.
19.
Liu
,
L.
, and
Mishchenko
,
M. I.
, 2007, “
Scattering and Radiative Properties of Complex Soot and Soot-Containing Aggregate Particles
,”
J. Quant. Spectr. Rad. Trans.
,
106
, pp.
262
273
.
20.
Mishchenko
,
M. I.
,
Videen
,
G.
,
Khlebtsov
,
G.
,
Wriedt
,
T.
, and
Zakharova
,
N. T.
, 2008, “
Comprehensive T-Matrix Reference Database: A 2006-07 Update
,”
J. Quant. Spectr. Rad. Trans.
,
109
, pp.
1447
1460
.
21.
Van-Hulle
,
P.
,
Weill
,
M. -E.
,
Talbaut
,
M.
, and
Coppalle
,
A.
, 2002, “
Comparison of Numerical Studies Characterizing Optical Properties of Soot Aggregates for Improved EXSCA Measurements
,”
Part. Part. Syst. Charact.
0934-0866,
19
, pp.
47
57
.
22.
Liu
,
F.
, and
Snelling
,
D. R.
, 2008, “
Evaluation of the Accuracy of the RDG Approximation for the Absorption and Scattering Properties of Fractal Aggregates of Flame-Generated Soot
,” Paper No. AIAA-2008-4362.
23.
Xu
,
Y. -L.
, and
Khlebtsov
,
N. G.
, 2003, “
Orientational-Averaged Radiative Properties of an Arbitrary Configuration of Scatters
,”
J. Quant. Spectr. Rad. Trans.
,
79–80
, pp.
1121
1137
.
24.
Meakin
,
P.
, 1983, “
The Vold-Sutherland and Eden Models of Cluster Formation
,”
J. Colloid Interface Sci.
0021-9797,
96
, pp.
415
424
.
25.
Meakin
,
P.
, 1984, “
Effects of Cluster Trajectories on Cluster-Cluster Aggregation: A Comparison of Linear and Brownian Trajectories in Two- and Three-Dimensional Simulations
,”
Phys. Rev. A
1050-2947,
29
, pp.
997
999
.
26.
Mackowski
,
D. W.
, 2006, “
A Simplified Model to Predict the Effects of Aggregation on the Absorption Properties of Soot Particles
,”
J. Quant. Spectr. Rad. Trans.
,
100
, pp.
237
249
.
27.
Forrest
,
S. R.
, and
Witten
,
T. A.
, Jr.
, 1979, “
Long-Range Correlations in Smoke-Particle Aggregates
,”
J. Phys. A
0305-4470,
12
, pp.
L109
L117
.
28.
Filippov
,
A. V.
,
Zurita
,
M.
, and
Rosner
,
D. E.
, 2000, “
Fractal-Like Aggregates: Relation Between Morphology and Physical Properties
,”
J. Colloid Interface Sci.
0021-9797,
229
, pp.
261
273
.
30.
Farias
,
T. L.
,
Carvalho
,
M. G.
,
Köylü
,
Ü. Ö.
, and
Faeth
,
G. M.
, 1995, “
Computational Evaluation of Approximate Rayleigh-Debye-Gans/Fractal-Aggregate Theory for the Absorption and Scattering Properties of Soot
,”
ASME J. Heat Transfer
0022-1481,
117
, pp.
152
159
.
31.
Sorensen
,
C. M.
, 2001, “
Light Scattering by Fractal Aggregates: A Review
,”
Aerosol Sci. Technol.
0278-6826,
35
, pp.
648
687
.
32.
Lu
,
N.
, and
Sorensen
,
C. M.
, 1994, “
Depolarization Light Scattering From Fractal Soot Aggregates
,”
Phys. Rev. E
1063-651X,
50
, pp.
3109
3115
.
33.
Chen
,
Z. -Y.
,
Weakliem
,
P.
,
Gelbart
,
W. M.
, and
Meakin
,
P.
, 1987, “
Second-Order Light Scattering and Local Anisotropy of Diffusion-Limited Aggregates and Bond-Percolation Clusters
,”
Phys. Rev. Lett.
0031-9007,
58
, pp.
1996
1999
.
34.
Seeley
,
G.
,
Keyes
,
T.
, and
Ohtsuki
,
T.
, 1988, “
Higher-Order Fractal Geometry; Application to Multiple Light Scattering
,”
Phys. Rev. Lett.
0031-9007,
60
, pp.
290
293
.
You do not currently have access to this content.