The infrared (IR) radiative properties of TiO2 pigment particles must be known to perform thermal analysis of a TiO2 pigmented coating. Resins generally used in making pigmented coatings are absorbing at IR wavelengths, which means that the conventional Mie solution (MS) may not be adequate in this domain. There are two approaches to evaluating radiative properties in an absorbing medium: far field approximation (FFA) and near field approximation (NFA). In this study, after reviewing these two approaches, we evaluated the radiative properties of TiO2 particles in polyethylene resin as an absorbing matrix in the wavelength range of 1.715μm based on the MS, FFA, and NFA. We then calculated the effective scattering and absorption coefficients for different models. To investigate the effect of the particle size and volume concentration on the transmittance of IR wavelengths, we made a nongray radiative heat transfer in an anisotropic scattering monodisperse pigmented layer, with independent scattering using the radiation element method by the ray emission model. The results showed that all three approaches predicted similar results in the particle size domain and volume fraction range utilized in pigmented coatings.

1.
Baneshi
,
M.
,
Maruyama
,
S.
, and
Komiya
,
A.
, 2009, “
A New Approach to Optimizing Pigmented Coatings Considering Both Thermal and Aesthetic Effects
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
110
, pp.
192
204
.
2.
Mundy
,
W. C.
,
Roux
,
J. A.
, and
Smith
,
A. M.
, 1974, “
Mie Scattering by Spheres in an Absorbing Medium
,”
J. Opt. Soc. Am. A
0740-3232,
64
, pp.
1593
1597
.
3.
Chylek
,
P.
, 1977, “
Light Scattering by Small Particles in an Absorbing Medium
,”
J. Opt. Soc. Am.
0030-3941,
67
, pp.
561
563
.
4.
Yang
,
P.
,
Gao
,
B. C.
,
Wiscombe
,
W. J.
,
Mishchenko
,
M. I.
,
Platnik
,
S. E.
,
Huang
,
H. -L.
,
Baum
,
B. A.
,
Hu
,
Y. X.
,
Winker
,
D. M.
,
Tsay
,
S. -C.
, and
Park
,
S. K.
, 2002, “
Inherent and Apparent Scattering Properties of Coated or Uncoated Spheres Embedded in an Absorbing Host Medium
,”
Appl. Opt.
0003-6935,
41
, pp.
2740
2759
.
5.
Randrianalisoa
,
J.
,
Baillis
,
D.
, and
Pilon
,
L.
, 2006, “
Modeling Radiation Characteristics of Semitransparent Media Containing Bubbles or Particles
,”
J. Opt. Soc. Am. A Opt. Image Sci. Vis.
,
23
, pp.
1645
1656
. 1084-7529
6.
Yin
,
J.
, and
Pilon
,
L.
, 2006, “
Efficiency Factors and Radiation Characteristics of Spherical Scatterers in Absorbing Media
,”
J. Opt. Soc. Am. A Opt. Image Sci. Vis.
,
23
, pp.
2784
2796
. 1084-7529
7.
Sudiarta
,
I. W.
, and
Chylek
,
P.
, 2001, “
Mie-Scattering Formalism for Spherical Particle Embedded in an Absorbing Medium
,”
J. Opt. Soc. Am. A Opt. Image Sci. Vis.
,
18
, pp.
1275
1278
. 1084-7529
8.
Sudiarta
,
I. W.
, and
Chylek
,
P.
, 2001, “
Mie-Scattering Efficiency of a Large Spherical Particle Embedded in an Absorbing Medium
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
70
, pp.
709
714
.
9.
Lebedev
,
A. N.
,
Gartz
,
M.
,
Kreibig
,
U.
, and
Stenzel
,
O.
, 1999, “
Optical Extinction by Spherical Particles in an Absorbing Medium: Application to Composite Absorbing Films
,”
Eur. Phys. J. D
1434-6060,
6
, pp.
365
373
.
10.
Lebedev
,
N.
, and
Stenzel
,
O.
, 1999, “
Optical Extinction of an Assembly of Spherical Particles in an Absorbing Medium: Application to Silver Clusters in Absorbing Organic Materials
,”
Eur. Phys. J. D
1434-6060,
7
, pp.
83
88
.
11.
Fu
,
Q.
, and
Sun
,
W.
, 2001, “
Mie Theory for Light Scattering by a Spherical Particle in an Absorbing Medium
,”
Appl. Opt.
0003-6935,
40
, pp.
1354
1361
.
12.
Maruyama
,
S.
, 2004,
Light Energy Engineering
,
Yokendo
,
Tokyo
.
13.
Bohren
,
C. F.
, and
Huffman
,
D. R.
, 1983,
Absorption and Scattering of Light by Small Particles
,
Wiley
,
New York
.
14.
Palik
,
E. D.
, 1991,
Handbook of Optical Constants of Solids
,
Academic
,
San Diego
.
15.
Modest
,
M. F.
, 2003,
Radiative Heat Transfer
, 2nd ed.,
Academic
,
San Diego
.
16.
Vargas
,
W. E.
, 2000, “
Optimization of the Diffuse Reflectance of Pigmented Coatings Taking Into Account Multiple Scattering
,”
J. Appl. Phys.
0021-8979,
88
, pp.
4079
4084
.
17.
Vargas
,
W. E.
,
Amador
,
A.
, and
Niklasson
,
G. A.
, 2006, “
Diffuse reflectance of TiO2 Pigmented Paints: Spectral Dependence of the Average Pathlength Parameter and the Forward Scattering Ratio
,”
Opt. Commun.
0030-4018,
261
, pp.
71
78
.
18.
Dombrovsky
,
L. A.
, 2004, “
The Propagation of Infrared Radiation in a Semitransparent Liquid Containing Gas Bubbles
,”
High Temp.
0018-151X,
42
, pp.
143
150
.
19.
Sakurai
,
S.
,
Maruyama
,
S.
,
Sakai
,
S.
, and
Nishikawa
,
T.
, 2005, “
The Effect of Three-Dimensional Radiative Heat Transfer in Cloud Fields Using the Radiation Element Method
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
93
, pp.
79
87
.
20.
Khoukhi
,
M.
,
Maruyama
,
S.
, and
Sakai
,
S.
, 2007, “
Non-Gray Calculation of Plate Solar Collector With Low Iron Glazing Taking Into Account the Absorption and Emission With a Glass Cover
,”
Desalination
0011-9164,
209
, pp.
156
162
.
21.
Khoukhi
,
M.
, and
Maruyama
,
S.
, 2006, “
Theoretical Approach of a Flat-Plate Solar Collector Taking Into Account the Absorption and Emission Within Glass Cover Layer
,”
Sol. Energy
0038-092X,
80
, pp.
787
794
.
22.
Khoukhi
,
M.
, and
Maruyama
,
S.
, 2005, “
Theoretical Approach of a Flat Plate Solar Collector With Clear and Low-Iron Glass Covers Taking Into Account the Spectral Absorption and Emission Within Glass Covers Layer
,”
Renewable Energy
0960-1481,
30
, pp.
1177
1194
.
23.
Khoukhi
,
M.
,
Maruyama
,
S.
, and
Behnia
,
M.
, 2003, “
Combined Non-Gray Radiative and Conductive Heat Transfer in Solar Collector Glass Cover
,”
Sol. Energy
0038-092X,
75
, pp.
285
292
.
24.
Maruyama
,
S.
,
Mori
,
Y.
, and
Sakai
,
S.
, 2004, “
Nongray Radiative Heat Transfer Analysis in the Anisotropic Scattering Fog Layer Subjected to Solar Irradiation
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
83
, pp.
361
375
.
25.
Guo
,
Z.
, and
Maruyama
,
S.
, 2001, “
Prediction of Radiative Heat Transfer in Industrial Equipment Using the Radiation Element Method
,”
ASME J. Pressure Vessel Technol.
0094-9930,
123
, pp.
530
536
.
26.
Maruyama
,
S.
,
Nakai
,
H.
,
Sakurai
,
A.
, and
Komiya
,
A.
, 2008, “
Evaluation Method for Radiative Heat Transfer in Polydisperse Water Droplets
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
109
, pp.
1
15
.
27.
Dombrovsky
,
L. A.
,
Randrianalisoa
,
J. H.
, and
Baillis
,
D.
, 2007, “
Infrared Radiative Properties of Polymer Coatings Containing Hollow Microspheres
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
1516
1527
.
28.
Levinson
,
R.
,
Berdhal
,
P.
, and
Akbari
,
H.
, 2005, “
Solar Spectral Properties of Pigments—Part I: Model for Deriving Scattering and Absorption Coefficients From Transmittance and Reflectance Measurements
,”
Sol. Energy Mater. Sol. Cells
0927-0248,
89
, pp.
319
349
.
29.
Azan
,
V.
,
Lecamp
,
L.
,
Lebaudy
,
P.
, and
Bunel
,
C.
, 2007, “
Simulation of the Photopolymerization Gradient Inside a Pigmented Coating, Influence of TiO2 Concentration on the Gradient
,”
Prog. Org. Coat.
0300-9440,
58
, pp.
70
75
.
You do not currently have access to this content.