This study focuses on a technique, referred to as “solar cracking” of natural gas for the coproduction of hydrogen and carbon as byproduct with zero emission footprint. Seeding a solar reactor with micron-sized carbon particles increases the conversion efficiency drastically due to the radiation absorbed by the carbon particles and additional nucleation sites formed by carbon particles for heterogeneous decomposition reaction. The present study numerically tries to investigate the above fact by tracking carbon particles in a Lagrangian framework. The results on the effect of particle loading, particle emissivity, injection point location, and effect of using different window screening gases on a flow and temperature distribution inside a confined tornado flow reactor are presented.

1.
Ozalp
,
N.
,
Kogan
,
A.
, and
Epstein
,
M.
, 2009, “
Solar Decomposition of Fossil Fuels as an Option for Sustainability
,”
Int. J. Hydrogen Energy
0360-3199,
34
, pp.
710
720
.
2.
Ozalp
,
N.
,
Epstein
,
M.
, and
Kogan
,
A.
, 2010, “
Cleaner Pathways of Hydrogen, Carbon Nano-Materials and Metals Production Via Solar Thermal Processing
,”
J. Cleaner Prod.
0959-6526,
18
, pp.
900
907
.
3.
Abanades
,
S.
, and
Flamant
,
G.
, 2007, “
Experimental Study and Modeling of a High-Temperature Solar Chemical Reactor for Hydrogen Production From Methane Cracking
,”
Int. J. Hydrogen Energy
0360-3199,
32
, pp.
1508
1515
.
4.
Palumbo
,
R.
,
Keunecke
,
M.
,
Möller
,
S.
, and
Steinfeld
,
A.
, 2004, “
Reflections on the Design of Solar Thermal Chemical Reactors: Thoughts in Transformation
,”
Energy
0360-5442,
29
, pp.
727
744
.
5.
Ozalp
,
N.
,
Epstein
,
M.
, and
Kogan
,
A.
, 2008, “
Cracking of Natural Gas Into Hydrogen and Carbon Black Using Concentrated Solar Energy
,”
International Conference on Harnessing Technology
, ICHT Paper No. Sl. No. 9 (i), Vol.
49
.
6.
Zhang
,
J.
,
Fisher
,
T.
,
Ramachandran
,
P.
,
Gore
,
J.
, and
Mudawar
,
I.
, 2005, “
A Review of Heat Transfer Issues in Hydrogen Storage Technologies
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
1391
1400
.
7.
Rodat
,
S.
,
Abanades
,
S.
,
Sans
,
J.
, and
Flamant
,
G.
, 2009, “
Hydrogen Production From Solar Thermal Dissociation of Natural Gas: Development of a 10 kW Solar Chemical Reactor Prototype
,”
Sol. Energy
0038-092X,
83
, pp.
1599
1610
.
8.
Abanades
,
S.
, and
Flamant
,
G.
, 2008, “
Hydrogen Production From Solar Thermal Dissociation of Methane in a High-Temperature Fluid-Wall Chemical Reactor
,”
Chem. Eng. Process.
0255-2701,
47
, pp.
490
498
.
9.
Muradov
,
N.
, 2001, “
Catalysis of Methane Decomposition Over Elemental Carbon
,”
Catal. Commun.
1566-7367,
2
, pp.
89
94
.
10.
Bertocchi
,
R.
,
Karni
,
J.
, and
Kribus
,
A.
, 2004, “
Experimental Evaluation of a Non-Isothermal High Temperature Solar Particle Receiver
,”
Energy
0360-5442,
29
, pp.
687
700
.
11.
Klein
,
H.
,
Karni
,
J.
,
Ben-Zvi
,
R.
, and
Bertocchi
,
R.
, 2007, “
Heat Transfer in a Directly Irradiated Solar Receiver/Reactor for Solid-Gas Reactions
,”
Sol. Energy
0038-092X,
81
, pp.
1227
1239
.
12.
Hirsch
,
D.
, and
Steinfeld
,
A.
, 2004, “
Solar Hydrogen Production by Thermal Decomposition of Natural Gas Using a Vortex-Flow Reactor
,”
Int. J. Hydrogen Energy
0360-3199,
29
, pp.
47
55
.
13.
Trommer
,
D.
,
Hrisch
,
D.
, and
Steinfeld
,
A.
, 2004, “
Kinetic Investigation of the Thermal Decomposition of CH4 by Direct Irradiation of a Vortex Flow Laden With Carbon Particles
,”
Int. J. Hydrogen Energy
0360-3199,
29
, pp.
627
633
.
14.
Kogan
,
M.
, and
Kogan
,
A.
, 2003, “
Production of Hydrogen and Carbon by Solar Thermal Methane Splitting. I. The Unseeded Reactor
,”
Int. J. Hydrogen Energy
0360-3199,
28
, pp.
1187
1198
.
15.
Muradov
,
N.
,
Smith
,
F.
, and
T-Raissi
,
A.
, 2005, “
Catalytic Activity of Carbons for Methane Decomposition
,”
Catal. Today
0920-5861,
225
, pp.
102
103
.
16.
Haueter
,
P.
,
Moeller
,
S.
,
Palumbo
,
R.
, and
Steinfeld
,
A.
, 1999, “
The Production of Zinc by Thermal Dissociation of Zinc Oxide Solar Chemical Reactor Design
,”
Sol. Energy
0038-092X,
67
, pp.
161
197
.
17.
Kogan
,
A.
,
Israeli
,
M.
, and
Alcobi
,
E.
, 2007, “
Production of Hydrogen and Carbon by Solar Thermal Methane Splitting. IV. Preliminary Simulation of a Confined Tornado Flow Configuration by Computational Fluid Dynamics
,”
Int. J. Hydrogen Energy
0360-3199,
32
, pp.
4800
4810
.
18.
Meier
,
A.
,
Ganz
,
J.
, and
Steinfeld
,
A.
, 1996, “
Modeling of a novel High-Temperature Solar Chemical Reactor
,”
Chem. Eng. Sci.
0009-2509,
51
, pp.
3181
3186
.
19.
Abanades
,
S.
, and
Flamant
,
G.
, 2006, “
Solar Hydrogen Production From the Thermal Splitting of Methane in a High Temperature Solar Chemical Reactor
,”
Sol. Energy
0038-092X,
80
, pp.
1321
1332
.
20.
Kogan
,
A.
,
Kogan
,
M.
, and
Barak
,
S.
, 2004, “
Production of Hydrogen and Carbon by Solar Thermal Methane Splitting. II. Room Temperature Simulation Tests of Seeded Solar Reactor
,”
Int. J. Hydrogen Energy
0360-3199,
29
, pp.
1227
1236
.
21.
Morsi
,
S. A.
, and
Alexander
,
A. J.
, 1972, “
An Investigation of Particle Trajectories in Two-Phase Flow Systems
,”
J. Fluid Mech.
0022-1120,
55
, pp.
193
208
.
22.
Ranz
,
W. E.
, and
Marshall
,
J.
, 1952, “
Evaporation From Drops, Part 1
,”
Chem. Eng. Prog.
0360-7275,
48
, p.
173
.
23.
Ho
,
C. K.
,
Khalasa
,
S. S.
, and
Siegel
,
N. P.
, 2009, “
Modeling On-Sun Tests of a Prototype Solid Particle Receiver for Concentrating Solar Power Processes and Storage
,”
Proceedings of ES2009 Energy Sustainability
.
24.
Yaws
,
C.
, 1999,
Chemical Properties Hand Book
,
McGraw-Hill
,
New York
.
25.
Bohren
,
C. F.
, and
Huffman
,
D. K.
, 1983,
Absorption and Scattering of Light by Small Particles
,
Wiley
,
New York
.
26.
Dalzell
,
W.
, and
Sarofim
,
A.
, 1969, “
Optical Constants of Soot and Their Applications to Heat Flux Calculations
,”
ASME J. Heat Transfer
0022-1481,
91
, pp.
100
104
.
27.
Stull
,
R. V.
, and
Plass
,
G. N.
, 1960, “
Emissivity of Dispersed Carbon Particles
,”
J. Opt. Soc. Am.
0030-3941,
50
(
2
), pp.
121
125
.
28.
Rego-Barcena
,
S.
,
Mani
,
R.
,
Yang
,
F.
,
Saari
,
R.
, and
Thomson
,
M. J.
, 2009, “
Particle Emissivity in a Full Scale Steel Making Furnace
,”
Metall. Mater. Trans. B
1073-5615,
40
, pp.
158
168
.
29.
Dahl
,
J. K.
,
Weimer
,
A. W.
,
Graggen
,
A. Z.
, and
Steinfeld
,
A.
, 2005, “
Two-Dimensional Axi-Symmetric Model of a Solar-Thermal Fluid Wall Aerosol Flow Reactor
,”
ASME J. Sol. Energy Eng.
0199-6231,
127
, pp.
76
85
.
You do not currently have access to this content.