A new nonintrusive and whole field method for the measurement of entropy generation in microscale thermal-fluid devices is presented. The rate of entropy generation is a measure of the thermodynamic losses or irreversibilities associated with viscous effects and heat transfer in thermal-fluid systems. This method provides the entropy generation distribution in the device, thus enabling the designers to find and modify the areas producing high energy losses characterized by large entropy production rates. The entropy generation map is obtained by postprocessing the velocity and temperature distribution data, measured by micro particle image velocimetry and laser induced fluorescence methods, respectively. The velocity and temperature measurements lead to the frictional and thermal terms of entropy generation. One main application of this method is optimizing the efficiency of microchannel heatsinks, used in cooling of electronic devices. The minimum amount of entropy generation determines the optimum design parameters of heatsinks, leading to highest heat removal rates and at the same time, the lowest pressure drop across the heatsink. To show the capability of this technique, the entropy generation field in the transition region between a 100μm wide and a 200μm wide rectangular microchannel is measured. This method is used to measure thermal and frictional entropy generation rates in three different flow area transition geometries. The results can be used to determine which geometry has the highest thermal and hydraulic efficiencies.

1.
2000, “
Technology Roadmap for Semiconductors (ITRS): Executive Summary
,” Official Website, www.itrs.netwww.itrs.net
2.
2007, “
Technology Roadmap for Semiconductors (ITRS): Executive Summary
,” Official Website, www.itrs.netwww.itrs.net
3.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
, 1981, “
High Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
0741-3106,
2
, pp.
126
129
.
4.
Bejan
,
A.
, 1996,
Entropy Generation Minimization
, 1st ed.,
CRC
,
Boca Raton, FL
.
5.
Khan
,
W. A.
,
Yovanovich
,
M. M.
, and
Culham
,
J. R.
, 2006, “
Optimization of Microchannel Heat Sinks Using Entropy Generation Minimization Method
,”
22nd Annual IEEE Semiconductor Thermal Measurement and Management Symposium (Semi-Therm)
, Dallas, TX.
6.
Abbassi
,
H.
, 2007, “
Entropy Generation Analysis in a Uniformly Heated Microchannel Heat Sink
,”
J. Energy
0146-1412,
32
, pp.
1932
1947
.
7.
Chen
,
K.
, 2005, “
Second-Law Analysis and Optimization of Microchannel Flow Subjected to Different Thermal Boundary Conditions
,”
Int. J. Energy Res.
0363-907X,
29
, pp.
249
263
.
8.
Erbay
,
L. B.
,
Yalcin
,
M. M.
, and
Ercan
,
M. S.
, 2007, “
Entropy Generation in Parallel Plate Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
729
739
.
9.
Hooman
,
K.
, 2007, “
Entropy Generation for Microscale Forced Convection: Effects of Different Thermal Boundary Conditions Velocity Slip, Temperature Jump, Viscous Dissipation, and Duct Geometry
,”
Int. Commun. Heat Mass Transfer
0735-1933,
34
, pp.
945
957
.
10.
Ogedengbe
,
E. O. B.
,
Naterer
,
G. F.
, and
Rosen
,
M. A.
, 2006, “
Slip-Flow Irreversibility of Dissipative Kinetic and Internal Energy Exchange in Microchannels
,”
J. Micromech. Microeng.
0960-1317,
16
, pp.
2167
2176
.
11.
Adeyinka
,
O. B.
, and
Naterer
,
G. F.
, 2005, “
Particle Image Velocimetry Measurement of Entropy Production With Free Convection Heat Transfer
,”
Trans. ASME
0097-6822,
127
, pp.
614
623
.
12.
Naterer
,
G. F.
, and
Adeyinka
,
O. B.
, 2006, “
New Laser Based Method for Non-Intrusive Measurement of Available Energy Loss and Local Entropy Production
,”
Exp. Therm. Fluid Sci.
0894-1777,
31
, pp.
91
95
.
13.
Santiago
,
J. G.
,
Wereley
,
S. T.
,
Meinhart
,
C. D.
,
Beebe
,
D. J.
, and
Adrian
,
R. J.
, 1998, “
A Particle Image Velocimetry System for Microfluidics
,”
Exp. Fluids
0723-4864,
25
, pp.
316
319
.
14.
Natarjan
,
V. K.
, and
Christensen
,
K. T.
, 2009, “
Two-Color Laser-Induced Fluorescent Thermometry for Microfluidic Systems
,”
Meas. Sci. Technol.
0957-0233,
20
, pp.
015401
.
15.
Ross
,
D.
,
Gaitan
,
M.
, and
Locascio
,
L. E.
, 2001, “
Temperature Measurement in Microfluidic Systems Using a Temperature-Dependent Fluorescent Dye
,”
Anal. Chem.
0003-2700,
73
, pp.
4117
4123
.
16.
Sakakibara
,
J.
, and
Adrian
,
R. J.
, 1999, “
Whole Field Measurement of Temperature in Water Using Two-Color Laser Induced Fluorescent
,”
Exp. Fluids
0723-4864,
26
, pp.
7
15
.
17.
Kim
,
H. J.
,
Kihm
,
K. D.
, and
Allen
,
J. S.
, 2003, “
Examination of Ratiometric Laser Induced Fluorescence Thermometry for Microscale Spatial Measurement Resolution
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
3967
3974
.
18.
Yu
,
L.
,
Tay
,
F. E. H.
,
Xu
,
G.
,
Chen
,
B.
,
Avram
,
M.
, and
Iliescu
,
C.
, 2006, “
Adhesive Bonding With SU-8 Wafer Level for Microfluidic Devices
,”
J. Phys.: Conf. Ser.
1742-6588,
34
, pp.
776
781
.
19.
Adeyinka
,
O. B.
, and
Naterer
,
G. F.
, 2005, “
Experimental Uncertainty of Measured Entropy Production with Pulsed Laser PIV and Planar Laser Induced Fluorescence
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
1450
1461
.
20.
Meinhart
,
C. D.
,
Wereley
,
S. T.
, and
Santiago
,
J. G.
, 1999, “
PIV Measurements of a Microchannel Flow
,”
Exp. Fluids
0723-4864,
27
, pp.
414
419
.
21.
Devasenathipathy
,
S.
,
Santiago
,
J. G.
,
Wereley
,
S. T.
,
Meinhart
,
C. D.
, and
Takehara
,
K.
, 2003, “
Particle Imaging Techniques for Microfabricated Fluidic Systems
,”
Exp. Fluids
0723-4864,
34
, pp.
504
514
.
22.
Lee
,
S. Y.
,
Wereley
,
S. T.
,
Gui
,
L.
,
Qu
,
W.
, and
Mudawar
,
I.
, 2002, “
Microchannel Flow Measurement Using Micro Particle Image Velocimetry
,”
ASME International Mechanical Engineering Congress and Exposition
, New Orleans, LA.
23.
Tsuei
,
L.
, and
Savas
,
O.
, 2000, “
Treatment of Surfaces in Particle Image Velocimetry
,”
Exp. Fluids
0723-4864,
29
, pp.
203
214
.
24.
Figliola
,
R. S.
, and
Beasley
,
D. E.
, 2006,
Theory and Design for Mechanical Measurements
, 4th ed.,
Wiley
,
Hoboken, NJ
.
25.
Bourdon
,
C. J.
,
Olsen
,
M. G.
, and
Gorby
,
A. D.
, 2004, “
Validation of an Analytical Solution for Depth of Correlation in Microscopic Particle Image Velocimetry
,”
Meas. Sci. Technol.
0957-0233,
15
, pp.
318
327
.
26.
White
,
F. M.
, 2005,
Viscous Fluid Flow
, 3rd ed.,
McGraw-Hill
,
Columbus, OH
.
You do not currently have access to this content.