Using the ray tracing-node analyzing method, the 2D transient coupled radiative and conductive heat transfer in a rectangular semitransparent medium is investigated. The rectangular medium has one semitransparent and diffuse boundary (the other three boundaries are black) and is isotropically scattering. The transient differential energy equation is discretized by the fully implicit finite difference method, and the radiative source term of the energy equation is expressed by the radiative transfer coefficients (RTCs). The integrality and reciprocity relationships of the RTCs without considering scattering for the 2D physical model are discovered, which are much different from those for the 1D case. When solving the isotropic scattering RTCs, the RTCs without considering scattering are normalized at first, and then the normalized RTCs are used to trace the energy scattered by control volumes. Finally, the isotropic scattering RTCs are solved by reverse calculation. The Patankar’s linearization method is used to linearize the radiative source term and the opaque boundary conditions, and the boundary conditions are dealt with an additional source term method. The alternating direction implicit method is applied to solve the nominal linearized equations. The effects of scattering albedo, extinction coefficient, refractive index, etc., on transient coupled heat transfer are studied. The study shows that when the extinction coefficient is so small, the increase in scattering albedo can intensify the cooling of the three black surfaces of the rectangular medium.

1.
Siegel
,
R.
, 1999, “
Transient Thermal Analysis of a Translucent Thermal Barrier Coating on a Metal Wall
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
478
481
.
2.
Luo
,
J. -F.
,
Yi
,
H. -L.
, and
Tan
,
H. -P.
, 2008, “
Thermal Analysis of Optical Windows for Spacecraft Application
,”
J. Thermophys. Heat Transfer
0887-8722,
22
(
2
), pp.
296
301
.
3.
Lee
,
K. H.
, and
Viskanta
,
R.
, 1999, “
Comparison of the Diffusion Approximation and the Discrete Ordinates Method for the Investigation of Heat Transfer in Glass
,”
Glass Sci. Technol., (Offenbach, Ger.)
,
72
, pp.
254
265
.
4.
Hollands
,
K. G. T.
, 2010, “
The Simplified-Fredholm Integral Equation Solver and Its Use in Thermal Radiation
,”
ASME J. Heat Transfer
0022-1481,
132
, p.
023401
.
5.
Feldheim
,
V.
, and
Lybaert
,
P.
, 2004, “
Solution of Radiative Heat Transfer Problem With the Discrete Transfer Method Applied to Triangular Meshes
,”
J. Comput. Appl. Math.
0377-0427,
168
, pp.
179
190
.
6.
Asllanaj
,
F.
,
Feldheim
,
V.
, and
Lybaert
,
P.
, 2007, “
Solution of Radiative Heat Transfer in 2-D Geometries by a Modified Finite-Volume Method Based on a Cell Vertex Scheme Using Unstructured Triangular Meshes
,”
Numer. Heat Transfer, Part B
1040-7790,
51
, pp.
97
119
.
7.
Asllanaj
,
F.
,
Parent
,
G.
, and
Jeandel
,
G.
, 2007, “
Transient Radiation and Conduction Heat Transfer in a Gray Absorbing-Emitting Medium Applied on Two-Dimensional Complex-Shaped Domains
,”
Numer. Heat Transfer, Part B
1040-7790,
52
, pp.
179
200
.
8.
Ravishankar
,
M.
,
Mazumder
,
S.
, and
Kumar
,
A.
, 2010, “
Finite-Volume Formulation and Solution of the P3 Equations of Radiative Transfer on Unstructured Meshes
,”
ASME J. Heat Transfer
0022-1481,
132
, p.
023402
.
9.
Dez
,
V. L.
,
Vaillon
,
R.
,
Lemonnier
,
D.
, and
Lallemand
,
M.
, 2000, “
Conductive-Radiative Coupling in an Absorbing-Emitting Axisymmetric Medium
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
65
, pp.
787
803
.
10.
Furmanski
,
P.
, and
Banaszek
,
J.
, 2004, “
Finite Element Analysis of Concurrent Radiation and Conduction in Participating Media
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
84
, pp.
563
573
.
11.
Widmer
,
G.
, 2010, “
An Efficient Sparse Finite Element Solver for the Radiative Transfer Equation
,”
ASME J. Heat Transfer
0022-1481,
132
, p.
023403
.
12.
Becker
,
R.
,
Koch
,
R.
,
Bauer
,
H. -J.
, and
Modest
,
M. F.
, 2010, “
A Finite Element Treatment of the Angular Dependency of the Even-Parity Equation of Radiative Transfer
,”
ASME J. Heat Transfer
0022-1481,
132
, p.
023404
.
13.
Hitti
,
G. E.
,
Nemer
,
M.
, and
Khoury
,
K. E.
, 2010, “
Transient Radiation and Conduction Heat Transfer in Glass Sheets by the Thin Layer Approximation
,”
ASME J. Heat Transfer
0022-1481,
132
, p.
023506
.
14.
Altaç
,
Z.
, and
Tekkalmaz
,
M.
, 2008, “
Benchmark Solution of Radiative Transfer Equation for Three-Dimensional Rectangular Homogeneous Media
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
109
, pp.
587
607
.
15.
Mishra
,
S. C.
,
Lankadasu
,
A.
, and
Beronov
,
K. N.
, 2005, “
Application of the Lattice Boltzmann Method for Solving the Energy Equation of a 2-D Transient Conduction-Radiation Problem
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
3648
3659
.
16.
Mishra
,
S. C.
,
Talukdar
,
P.
,
Trimis
,
D.
, and
Durst
,
F.
, 2005, “
Two-Dimensional Transient Conduction and Radiation Heat Transfer With Temperature Dependent Thermal Conductivity
,”
Int. Commun. Heat Mass Transfer
0735-1933,
32
, pp.
305
314
.
17.
Mishra
,
S. C.
, and
Roy
,
H. K.
, 2007, “
Solving Transient Conduction and Radiation Heat Transfer Problems Using the Latice Boltzmann Method and the Finite Volume Method
,”
J. Comput. Phys.
0021-9991,
223
, pp.
89
107
.
18.
Rousse
,
D. R.
,
Gautier
,
G.
, and
Sacadura
,
J. F.
, 2000, “
Numerical Prediction of Two-Dimensional Conduction, Convection, and Radiation Heat Transfer I. Formulation
,”
Int. J. Therm. Sci.
1290-0729,
39
, pp.
315
331
.
19.
Rousse
,
D. R.
,
Gautier
,
G.
, and
Sacadura
,
J. F.
, 2000, “
Numerical Prediction of Two-Dimensional Conduction, Convection, and Radiation Heat Transfer. II. Validation
,”
Int. J. Therm. Sci.
1290-0729,
39
, pp.
332
353
.
20.
Ben Salah
,
M.
,
Askri
,
F.
,
Rousse
,
D. R.
, and
Ben Nasrallah
,
S.
, 2005, “
Control Volume Finite Element Method for Radiation
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
92
, pp.
9
30
.
21.
Grissa
,
H.
,
Askri
,
F.
,
Ben Salah
,
M.
, and
Ben Nasrallah
,
S.
, 2007, “
Three-Dimensional Radiative Transfer Modeling Using the Control Volume Finite Element Method
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
105
, pp.
388
404
.
22.
Kim
,
T. Y.
, and
Baek
,
S. W.
, 1991, “
Analysis of Combined Conductive and Radiative Heat Transfer in a Two-Dimensional Rectangular Enclosure Using the Discrete Ordinates Method
,”
Int. J. Heat Mass Transfer
0017-9310,
34
(
9
), pp.
2265
2273
.
23.
Sakami
,
M.
,
Charette
,
A.
, and
Dez
,
V. L.
, 1996, “
Application of the Discrete Ordinates Method to Combined Conductive and Radiative Heat Transfer in a 2-D Complex Geometry
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
56
(
4
), pp.
517
533
.
24.
Vaillon
,
R.
,
Lallemand
,
M.
, and
Lemonnier
,
D.
, 1996, “
Radiative Heat Transfer in Orthogonal Curvilinear Coordinates Using the Discrete Ordinate Method
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
55
(
1
), pp.
7
17
.
25.
Liu
,
L. -H.
, and
Tan
,
H. -P.
, 2001, “
Transient Radiation and Conduction in a Two Dimensional Participating Cylinder Subjected to a Pulse Irradiation
,”
Int. J. Therm. Sci.
1290-0729,
40
, pp.
877
889
.
26.
Cheong
,
K. B.
, and
Song
,
T. H.
, 1997, “
An Alternative Discrete Ordinates Method With Interpolation and Source Differencing for Two-Dimensional Radiative Transfer Problem
,”
Numer. Heat Transfer, Part B
1040-7790,
32
, pp.
107
125
.
27.
Cha
,
H.
, and
Song
,
T. H.
, 2000, “
Discrete Ordinates Interpolation Method Applied to Irregular Three-Dimensional Geometries
,”
ASME J. Heat Transfer
0022-1481,
122
, pp.
823
827
.
28.
Kim
,
K.
,
Lee
,
E.
, and
Song
,
T. H.
, 2008, “
Discrete Ordinates Interpolation Method for Radiative Heat Transfer Problem in Three-Dimensional Enclosures Filled With Non-Gray or Scattering Medium
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
109
, pp.
2579
2589
.
29.
Lee
,
K. H.
, and
Viskanta
,
R.
, 2001, “
Two-Dimensional Combined Conduction and Radiation Heat Transfer: Comparison of the Discrete Ordinate Method and the Diffusion Approximation
,”
Numer. Heat Transfer, Part A
1040-7782,
39
, pp.
205
225
.
30.
Tan
,
H. -P.
, 1988, “
Transfert Couplé Rayonnement-Conduction Instationnaire Dans Les Milieux Semi-Transparents à Frontières Opaques ou Naturelles Soumis à des Conditions de Température et de Flux
,” Ph.D. thesis, Université de Poitiers, France.
31.
Tan
,
H. -P.
,
Ruan
,
L. -M.
,
Xia
,
X. -L.
,
Yu
,
Q. -Z.
, and
Tong
,
T. -W.
, 1999, “
Transient Coupled Radiative and Conductive Heat Transfer in an Absorbing, Emitting and Scattering Medium
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
2967
2980
.
32.
Luo
,
J. -F.
,
Tan
,
H. -P.
,
Ruan
,
L. -M.
, and
Tong
,
T. W.
, 2003, “
Refractive Index Effects on Heat Transfer in Multilayer Scattering Composite
,”
J. Thermophys. Heat Transfer
0887-8722,
17
(
3
), pp.
407
419
.
33.
Luo
,
J. -F.
,
Chang
,
S. -L.
,
Yang
,
J. -K.
, and
Yang
,
J. -C.
, 2009, “
Conduction and Radiation in a Rectangular Isotropic Scattering Medium With Black Surfaces by the RTNAM
,”
Int. J. Heat Mass Transfer
0017-9310,
52
, pp.
5064
5071
.
34.
Siegel
,
R.
, 1993, “
Variable Refractive Index Effects on Radiation in Semitransparent Scattering Multilayered Regions
,”
J. Thermophys. Heat Transfer
0887-8722,
7
(
4
), pp.
624
630
.
35.
Luo
,
J. -F.
, and
Shen
,
X.
, 2009, “
Numerical Method of the Ray Tracing-Node Analysing Method for Solving 2-D Coupled Heat Transfer in a Rectangular Medium
,”
Numer. Heat Transfer, Part A
1040-7782,
55
, pp.
465
486
.
You do not currently have access to this content.