Detailed phonon transport at Si/Ge interfaces is studied using the molecular dynamics wave-packet method. Three types of interfaces are investigated: A smooth interface, an interface with random roughness, and an interface with a regularly patterned roughness. The phonon transmissivity for each case is calculated as a function of phonon frequency, roughness characteristic length, and atomic structure. For a smooth interface, the transmissivities predicted by the MD simulations agree well with the acoustic mismatch model based on the continuum assumption. The rough interface simulation results indicate that random roughness is the source of incoherent phonon scattering and decreases the phonon transmission. Periodic structures such as the regularly patterned roughness employed in this paper cause strong phonon wave interference and may restore phonon transmission as the layer thickness increases.

1.
Asheghi
,
M.
,
Touzelbaev
,
M. N.
,
Goodson
,
K. E.
,
Leung
,
Y. K.
, and
Wong
,
S. S.
, 1998, “
Temperature-Dependent Thermal Conductivity of Single-Crystal Silicon Layers in SOI Substrates
,”
ASME J. Heat Transfer
0022-1481,
120
, pp.
30
36
.
2.
Snow
,
E. S.
,
Novak
,
J. P.
,
Campbell
,
P. M.
, and
Park
,
D.
, 2003, “
Random Networks of Carbon Nanotubes as an Electronic Material
,”
Appl. Phys. Lett.
0003-6951,
82
, pp.
2145
2147
.
3.
Lee
,
S. -M.
,
Cahill
,
D.
, and
Venkatasubramanian
,
R.
, 1997, “
Thermal Conductivity of Si–Ge Superlattices
,”
Appl. Phys. Lett.
0003-6951,
70
, pp.
2957
2959
.
4.
Duan
,
X.
,
Niu
,
C.
,
Sahi
,
V.
,
Chen
,
J.
,
Parce
,
J. W.
,
Empedocles
,
S.
, and
Goldman
,
J. L.
, 2003, “
High-Performance Thin-Film Transistors using Semiconductor Nanowires and Nanoribbons
,”
Nature (London)
0028-0836,
425
, pp.
274
278
.
5.
Xu
,
J.
, and
Fisher
,
T. S.
, 2006, “
Enhancement of Thermal Interface Materials With Carbon Nanotube Arrays
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
1658
1666
.
6.
Kapitza
,
P. L.
, 1941, “
The Study of Heat Transfer in Helium II
,”
Zh. Eksp. Teor. Fiz.
0044-4510,
11
, pp.
1
31
.
7.
Khalatnikov
,
I. M.
, and
Adamenko
,
I. N.
, 1973, “
Theory of the Kapitza Temperature Discontinuity at a Solid Body-Liquid Helium Boundary
,”
Sov. Phys. JETP
0038-5646,
36
, pp.
391
402
.
8.
Swartz
,
E. T.
, and
Pohl
,
R. O.
, 1987, “
Thermal Resistance at Interfaces
,”
Appl. Phys. Lett.
0003-6951,
51
, pp.
2200
2202
.
9.
Stevens
,
R. J.
,
Norris
,
P. M.
, and
Zhigilei
,
L. V.
, 2004, “
Molecular-Dynamics Study of Thermal Boundary Resistance: Evidence of Strong Inelastic Scattering Transport Channels
,”
Proceedings of IMECE
, Anaheim, CA.
10.
Burkhard
,
G.
, and
Sawaoka
,
A. B.
, 1995, “
The Effect of Umklapp Processes on the Heat Transport of Solids
,”
The Symposium on Thermal Science and Engineering in Honor of Chancellor Chang-Lin Tien
, University of California Berkeley, CA, pp.
145
152
.
11.
Stoner
,
R. J.
, and
Maris
,
H. J.
, 1993, “
Kapitza Conductance and Heat Flow Between Solids at Temperatures From 50 to 300 K
,”
Phys. Rev. B
0163-1829,
48
, pp.
16373
16387
.
12.
Young
,
D. A.
, and
Maris
,
H. J.
, 1989, “
Lattice-Dynamical Calculation of the Kapitza Resistance Between FCC Lattices
,”
Phys. Rev. B
0163-1829,
40
, pp.
3685
3693
.
13.
Zhao
,
H.
, and
Freund
,
J. B.
, 2005, “
Lattice-dynamical Calculation of Phonon Scattering at Ideal Si–Ge Interfaces
,”
J. Appl. Phys.
0021-8979,
97
, p.
024903
.
14.
Mingo
,
N.
, and
Yang
,
L.
, 2003, “
Phonon Transport in Nanowires Coated With an Amorphous Material: An atomistic Green’s Function Approach
,”
Phys. Rev. B
0163-1829,
68
, p.
245406
.
15.
Zhang
,
W.
,
Fisher
,
T. S.
, and
Mingo
,
N.
, 2007, “
Simulation of Interfacial Phonon Transport in Si–Ge Heterostructures Using an Atomistic Green’s Function Method
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
483
491
.
16.
Zhao
,
H.
, and
Freund
,
J. B.
, 2009, “
Phonon Scattering at a Rough Interface Between Two FCC Lattices
,”
J. Appl. Phys.
0021-8979,
105
, p.
013515
.
17.
Choi
,
S. -H.
, and
Maruyama
,
S.
, 2005, “
Thermal Boundary Resistance at an Epitaxially Perfect Interface of Thin Films
,”
Int. J. Therm. Sci.
1290-0729,
44
, pp.
547
558
.
18.
Maiti
,
A.
,
Mahan
,
G. D.
, and
Pantelides
,
S. T.
, 1997, “
Dynamical Simulation of Nonequilibrium Processes—Heat Flow and the Kapitza Resistance Across Grain Boundaries
,”
Solid State Commun.
0038-1098,
102
, pp.
517
521
.
19.
Liang
,
X. -G.
,
Yue
,
B. J.
, and
Maruyama
,
S.
, 2007, “
Simulation of Interface Structure Influence on In-Plane Thermal Conductivity of Ar-Like Nano Films by Molecular Dynamics
,”
J. Enhanced Heat Transfer
1065-5131,
14
, pp.
233
242
.
20.
Schelling
,
P. K.
,
Phillpot
,
S. R.
, and
Keblinski
,
P.
, 2004, “
Kapitza Conductance and Phonon Scattering at Grain Boundaries by Simulation
,”
J. Appl. Phys.
0021-8979,
95
, pp.
6082
6091
.
21.
Twu
,
C. J.
, and
Ho
,
J. R.
, 2003, “
Molecular Dynamics Study of Energy Flow and the Kaptiza Conductance Across an Interface With Iimperfection Formed by Two Dielectric Thin Films
,”
Phys. Rev. B
0163-1829,
67
, p.
205422
.
22.
Schelling
,
P. K.
,
Phillpot
,
S. R.
, and
Keblinski
,
P.
, 2002, “
Phonon Wave-Packet Dynamics at Semiconductor Interfaces by Molecular_Dynamics Simulation
,”
Appl. Phys. Lett.
0003-6951,
80
, pp.
2484
2486
.
23.
Stevens
,
R. J.
,
Zhigilei
,
L. V.
, and
Norris
,
P. M.
, 2007, “
Effects of Temperature and Disorder on Thermal Boundary Conductance at Solid-Solid Interfaces: Non-Equilibrium Molecular Dynamics Simulations
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
3977
3989
.
24.
Hu
,
M.
,
Shenogin
,
S.
, and
Keblinski
,
P.
, 2007, “
Molecular Dynamics Simulation of Interfacial Thermal Conductance between Silicon and Amorphous Polyethylene
,”
Appl. Phys. Lett.
0003-6951,
91
, p.
241910
.
25.
Bazant
,
M. Z.
,
Kaxiras
,
E.
, and
Justo
,
J. F.
, 1997, “
Environment Dependent Interatomic Potential for Bulk Silicon
,”
Phys. Rev. B
0163-1829,
56
, pp.
8542
8552
.
26.
Sun
,
L.
,
Le
,
C.
,
Faisal
,
S.
, and
Murthy
,
J. Y.
, 2007, “
Performance of a Parallel Molecular Dynamics Program for Computation of Thermal Properties
,”
Numer. Heat Transfer, Part B
1040-7790,
51
, pp.
315
331
.
27.
McGaughey
,
A. J. H.
, and
Kaviany
,
M.
, 2005, “
Observation and Description of Phonon Interaction in Molecular Dynamics Simulations
,”
Phys. Rev. B
0163-1829,
71
, p.
184305
.
28.
Sun
,
L.
, and
Murthy
,
J. Y.
, 2006, “
Domain Size Effects in Molecular Dynamics Simulation of Phonon Transport in Silicon
,”
Appl. Phys. Lett.
0003-6951,
89
, p.
171919
.
29.
Simkin
,
M. V.
, and
Mahan
,
G. D.
, 2000, “
Minimum Thermal Conductivity of Super-Lattices
,”
Phys. Rev. Lett.
0031-9007,
84
, pp.
927
930
.
30.
Daly
,
B. C.
, and
Maris
,
H. J.
, 2002, “
Calculation of the Thermal Conductivity of Superlattices by Molecular Dynamics Simulation
,”
Physica B
0921-4526,
316–317
, pp.
247
249
.
31.
Schelling
,
P. K.
, and
Phillpot
,
S. R.
, 2003, “
Multiscale Simulation of Phonon Transport in Superlattices
,”
J. Appl. Phys.
0021-8979,
93
, pp.
5377
5387
.
You do not currently have access to this content.