We present numerical studies of particle dispersion and species mixing in a ζ potential patterned straight microchannel. A continuous flow is generated by superposition of a steady pressure-driven flow and time-periodic electroosmotic flow induced by a streamwise ac electric field. ζ potential patterns are placed critically in the channel to achieve spatially asymmetric time-dependent flow fields that lead to chaotic stirring. Parametric studies are performed as a function of the Strouhal number (normalized ac frequency), while the mixer geometry, ratio of the Poiseuille flow and electroosmotic velocities, and the flow kinematics (Reynolds number) are kept constant. Lagrangian particle tracking is employed for observations of particle dispersion. Poincaré sections are constructed to identify the chaotic and regular zones in the mixer. Filament stretching and the probability density function of the stretching field are utilized to quantify the “locally optimum” stirring conditions and to demonstrate the statistical behavior of fully and partially chaotic flows. Numerical solutions of the species transport equation are performed as a function of the Peclet number (Pe) at fixed kinematic conditions. Mixing efficiency is quantified using the mixing index, based on standard deviation of the scalar species distribution. The mixing length (lm) is characterized as a function of the Peclet number and lmln(Pe) scaling is observed for the fully chaotic flow case. Objectives of this study include the presentation and characterization of the new continuous flow mixer concept and the demonstration of the Lagrangian-based particle tracking tools for quantification of chaotic strength and stirring efficiency in continuous flow systems.

1.
Karniadakis
,
G.
,
Beskok
,
A.
, and
Aluru
,
N.
, 2005,
Microflows and Nanoflows: Fundamentals and Simulation
,
Springer
,
New York
.
2.
Qian
,
S.
, and
Bau
,
H. H.
, 2002, “
A Chaotic Electroosmotic Stirrer
,”
Anal. Chem.
0003-2700,
74
, pp.
3616
3625
.
3.
Holden
,
M. A.
,
Kumar
,
S.
,
Castellana
,
E. T.
,
Beskok
,
A.
, and
Cremer
,
P. S.
, 2003, “
Generating Fixed Concentration Arrays in a Microfluidic Device
,”
Sens. Actuators B
0925-4005,
92
(
1–2
), pp.
199
207
.
4.
Hessel
,
V.
,
Löwe
,
H.
, and
Schönfeld
,
F.
, 2005, “
Micromixers—A Review on Passive and Active Mixing Principles
,”
Chem. Eng. Sci.
0009-2509,
60
, pp.
2479
2501
.
5.
Chang
,
C. C.
, and
Yang
,
R. J.
, 2007, “
Electrokinetic Mixing in Microfluidic Systems
,”
Microfluid. Nanofluid.
1613-4982,
3
, pp.
501
525
.
6.
Stroock
,
A. D.
,
Dertinger
,
S. K. W.
,
Ajdari
,
A.
,
Mezic
,
I.
,
Stone
,
H. A.
, and
Whitesides
,
G. M.
, 2002, “
Chaotic Mixer for Microchannels
,”
Science
0036-8075,
295
(
5555
), pp.
647
651
.
7.
Kang
,
T. G.
, and
Kwon
,
T. H.
, 2004, “
Colored Particle Tracking Method for Mixing Analysis of Chaotic Micromixers
,”
J. Micromech. Microeng.
0960-1317,
14
, pp.
891
899
.
8.
Camesasca
,
M.
,
Manas-Zloczower
,
I.
, and
Kaufman
,
M.
, 2005, “
Entropic Characterization of Mixing in Microchannels
,”
J. Micromech. Microeng.
0960-1317,
15
, pp.
2038
2044
.
9.
Kim
,
D. S.
,
Lee
,
I. H.
,
Kwon
,
T. H.
, and
Cho
,
D. W.
, 2004, “
A Barrier Embedded Kenics Micromixer
,”
J. Micromech. Microeng.
0960-1317,
14
, pp.
1294
1301
.
10.
Jeon
,
M. K.
,
Kim
,
J. H.
,
Noh
,
J.
,
Kim
,
S. H.
,
Park
,
H. G.
, and
Woo
,
S. I.
, 2005, “
Design and Characterization of a Passive Recycle Micromixer
,”
J. Micromech. Microeng.
0960-1317,
15
, pp.
346
350
.
11.
Xia
,
H. M.
,
Shu
,
C.
,
Wan
,
S. Y. M.
, and
Chew
,
Y. T.
, 2006, “
Influence of the Reynolds Number on Chaotic Mixing in a Spatially Periodic Micromixer and its Characterization Using Dynamical System Techniques
,”
J. Micromech. Microeng.
0960-1317,
16
, pp.
53
61
.
12.
Lee
,
S. W.
,
Kim
,
D. S.
,
Lee
,
S. S.
, and
Kwon
,
T. H.
, 2006, “
A Split and Recombination Micromixer Fabricated in a PDMS Three-Dimensional Structure
,”
J. Micromech. Microeng.
0960-1317,
16
, pp.
1067
1072
.
13.
Cha
,
J. H.
,
Kim
,
J. S.
,
Ryu
,
S. K.
,
Park
,
J. Y.
,
Jeong
,
Y. W.
,
Park
,
S. W.
,
Park
,
S. H.
,
Kim
,
H. C.
, and
Chun
,
K. J.
, 2006, “
A Highly Efficient 3D Micromixer Using Soft PDMS Bonding
,”
J. Micromech. Microeng.
0960-1317,
16
, pp.
1778
1782
.
14.
Niu
,
X.
, and
Lee
,
Y.
, 2003, “
Efficient Spatial-Temporal Chaotic Mixing in Microchannels
,”
J. Micromech. Microeng.
0960-1317,
13
, pp.
454
462
.
15.
Glasgow
,
I.
,
Batton
,
J.
, and
Aubry
,
N.
, 2004, “
Electroosmotic Mixing in Microchannels
,”
Lab Chip
1473-0197,
4
, pp.
558
562
.
16.
Lee
,
C. Y.
,
Lee
,
G. B.
,
Fu
,
L. M.
,
Lee
,
K. H.
, and
Yang
,
R. J.
, 2004, “
Electrokinetically Driven Active Micro-Mixers Utilizing Zeta Potential Variation Induced by Field Effect
,”
J. Micromech. Microeng.
0960-1317,
14
, pp.
1390
1398
.
17.
Goullet
,
A.
,
Glasgow
,
I.
, and
Aubry
,
N.
, 2006, “
Effects of Microchannel Geometry on Pulsed Flow Mixing
,”
Mech. Res. Commun.
0093-6413,
33
, pp.
739
746
.
18.
Coleman
,
J. T.
,
McKechnie
,
J.
, and
Sinton
,
D.
, 2006, “
High-Efficiency Electrokinetic Micromixing Through Symmetric Sequential Injection and Expansion
,”
Lab Chip
1473-0197,
6
, pp.
1033
1039
.
19.
Niu
,
X.
,
Liu
,
L.
,
Wen
,
W.
, and
Sheng
,
P.
, 2006, “
Hybrid Approach to High-Frequency Microfluidic Mixing
,”
Phys. Rev. Lett.
0031-9007,
97
, p.
044501
.
20.
Sundaram
,
N.
, and
Tafti
,
D. K.
, 2004, “
Evaluation of Microchamber Geometries and Surface Conditions for Electrokinetic Driven Mixing
,”
Anal. Chem.
0003-2700,
76
, pp.
3785
3793
.
21.
Ottino
,
J. M.
, 1989,
The Kinematics of Mixing: Stretching, Chaos, and Transport
,
Cambridge University Press
,
Cambridge, UK
.
22.
Fereday
,
D. R.
,
Haynes
,
P. H.
, and
Wonhas
,
A.
, 2002, “
Scalar Variance Decay in Chaotic Advection and Batchelor-Regime Turbulence
,”
Phys. Rev. E
1063-651X,
65
, pp.
035301
.
23.
Balkovsky
,
E.
, and
Fouxon
,
A.
, 1999, “
Universal Long-Time Properties of Lagrangian Statistics in the Batchelor Regime and Their Application to the Passive Scalar Problem
,”
Phys. Rev. E
1063-651X,
60
, pp.
4164
4174
.
24.
Kumar
,
S.
,
Kim
,
H. J.
, and
Beskok
,
A.
, 2007, “
Numerical Simulations of Peristaltic Mixing
,”
ASME J. Fluids Eng.
0098-2202,
129
, pp.
1361
1371
.
25.
Kim
,
H. J.
, and
Beskok
,
A.
, 2007, “
Quantification of Chaotic Strength and Mixing in a Micro Fluidic System
,”
J. Micromech. Microeng.
0960-1317,
17
, pp.
2197
2210
.
26.
Jones
,
S. W.
, 1991, “
The Enhancement of Mixing by Chaotic Advection
,”
Phys. Fluids A
0899-8213,
3
(
5
), pp.
1081
1086
.
27.
Liu
,
M.
,
Muzzio
,
F. J.
, and
Peskin
,
R. L.
, 1994, “
Quantification of Mixing in a Aperiodic Chaotic Flows
,”
Chaos, Solitons Fractals
0960-0779,
4
, pp.
869
893
.
28.
Anderson
,
P. D.
,
Galaktionov
,
O. S.
,
Peters
,
G. W. M.
,
Vosse
,
F. N.
, and
Meijer
,
H. E. H.
, 2000, “
Chaotic Fluid Mixing in Non-Quasi-Static Time-Periodic Cavity Flows
,”
Int. J. Heat Fluid Flow
0142-727X,
21
, pp.
176
185
.
29.
Aref
,
H.
, 1984, “
Stirring by Chaotic Advection
,”
J. Fluid Mech.
0022-1120,
143
, pp.
1
21
.
30.
Hwu
,
T.
,
Young
,
D. L.
, and
Chen
,
Y. Y.
, 1997, “
Chaotic Advections for Stokes Flows in Circular Cavity
,”
J. Eng. Mech.
0733-9399,
123
, pp.
774
782
.
31.
Suzuki
,
H.
,
Ho
,
C.
, and
Kasagi
,
N.
, 2004, “
A Chaotic Mixer for Magnetic Bead-Based Micro Cell Sorter
,”
J. Microelectromech. Syst.
1057-7157,
13
, pp.
779
790
.
32.
Liu
,
M.
,
Peskin
,
R. L.
,
Muzzio
,
F. J.
, and
Leong
,
C. W.
, 1994, “
Structure of the Stretching Field in Chaotic Cavity Flows
,”
AIChE J.
0001-1541,
40
, pp.
1273
1286
.
33.
Muzzio
,
F. J.
,
Swanson
,
P. D.
, and
Ottino
,
J. M.
, 1991, “
The Statistics of Stretching and Stirring in Chaotic Flows
,”
Phys. Fluids A
0899-8213,
3
(
5
), pp.
822
834
.
34.
Kim
,
H. J.
, and
Beskok
,
A.
, 2005, “
Characterization of Mixing in an Electroosmotically Stirred Continuous Micro Mixer
,”
Bull. Am. Phys. Soc.
0003-0503,
50
, pp.
160
.
35.
Gleeson
,
J. P.
, 2005, “
Transient Micromixing: Examples of Laminar and Chaotic Stirring
,”
Phys. Fluids
1070-6631,
17
, p.
100614
.
36.
Biddiss
,
E.
,
Erickson
,
D.
, and
Li
,
D.
, 2004, “
Heterogeneous Surface Charge Enhanced Micromixing for Electrokinetic Flows
,”
Anal. Chem.
0003-2700,
76
, pp.
3208
3213
.
37.
Sasaki
,
N.
,
Kitamori
,
T.
, and
Kim
,
H. B.
, 2006, “
AC Electroosmotic Micromixer for Chemical Processing in a Microchannel
,”
Lab Chip
1473-0197,
6
, pp.
550
554
.
38.
Wu
,
H. -Y.
, and
Liu
,
C. -H.
, 2005, “
A Novel Electrokinetic Mixer
,”
Sens. Actuators, A
0924-4247,
118
, pp.
107
115
.
39.
Ott
,
E.
, 1993,
Chaos in Dynamical Systems
,
Cambridge University Press
,
Cambridge, UK
.
40.
Dutta
,
P.
, and
Beskok
,
A.
, 2001, “
Analytical Solution of Combined Electroosmotic/Pressure Driven Flows in Two-Dimensional Straight Channels: Finite Debye Layer Effects
,”
Anal. Chem.
0003-2700,
73
, pp.
1979
1986
.
41.
Dutta
,
P.
, and
Beskok
,
A.
, 2001, “
Analytical Solution of Time Periodic Electroosmotic Flows: Analogies to Stokes’ Second Problem
,”
Anal. Chem.
0003-2700,
73
, pp.
5097
5102
.
42.
Voth
,
G. A.
,
Haller
,
G.
, and
Gollub
,
J. P.
, 2002, “
Experimental Measurements of Stretching Fields in Fluid Mixing
,”
Phys. Rev. Lett.
0031-9007,
88
, p.
254501
.
43.
Hilborn
,
R. C.
, 1994,
Chaos and Nonlinear Dynamics
,
Oxford University Press
,
New York
.
44.
Sprott
,
J. C.
, 2003,
Chaos and Time-Series Analysis
,
Oxford University Press
,
New York
.
45.
Lee
,
T. H.
, and
Kwon
,
T. H.
, 1999, “
A New Representative Measure of Chaotic Mixing in a Chaos Single-Screw Extruder
,”
Adv. Polym. Technol.
0730-6679,
18
, pp.
53
68
.
46.
Kim
,
H. J.
, 2004, “
Quantification of Chaotic Mixing in Microfluidic System
,” MS thesis, Department of Mechanical Engineering, Texas A&M University, College Station, TX.
47.
Beskok
,
A.
, and
Warburton
,
T. C.
, 2001, “
An Unstructured hp Finite-Element Scheme for Fluid Flow and Heat Transfer in Moving Domains
,”
J. Comput. Phys.
0021-9991,
174
, pp.
492
509
.
48.
Sert
,
C.
, and
Beskok
,
A.
, 2006, “
Spectral Element Formulations on Nonconforming Grids: A Comparative Study of Pointwise Matching and Integral Projection Methods
,”
J. Comput. Phys.
0021-9991,
211
, pp.
300
325
.
49.
Antonsen
,
T. M.
,
Fan
,
Z.
,
Ott
,
E.
, and
Garcia-Lopez
,
E.
, 1996, “
The Role of Chaotic Orbits in the Determination of Power Spectra of Passive Scalars
,”
Phys. Fluids
1070-6631,
8
(
11
), pp.
3094
3104
.
50.
Soper
,
S. A.
,
Henry
,
A. C.
,
Vaidya
,
B.
,
Galloway
,
M.
,
Wabuyele
,
M.
, and
McCarley
,
R. L.
, 2002, “
Surface Modification of Polymer-Based Microfluidic Devices
,”
Anal. Chim. Acta
0003-2670,
470
, pp.
87
99
.
51.
Lopez-Navarrete
,
E.
, and
Ocana
,
M.
, 2001, “
Fine Spherical Particles of Narrow Size Distribution in the Cr2O3–Al2O3 System
,”
J. Mater. Sci.
0022-2461,
36
, pp.
2383
2389
.
52.
Kallay
,
N.
,
Torbit
,
Z.
,
Golie
,
M.
, and
Matijevit
,
E.
, 1991, “
Determination of the Isoelectric Points of Several Metals by an Adhesion Method
,”
J. Phys. Chem.
0022-3654,
95
, pp.
7028
7032
.
You do not currently have access to this content.