A two-terminal thermal device exhibits thermal rectification if it transports heat more easily in one direction than in the reverse direction. Within the framework of classical heat conduction by Fourier’s law, thermal rectification occurs in a two-segment bar if the thermal conductivities of the segments have different dependencies on temperature. The general solution to this problem is a pair of coupled integral equations, which in previous work had to be solved numerically. In this work the temperature dependencies of the thermal conductivities are approximated using power laws, and perturbation analysis at low thermal bias leads to a simple algebraic expression, which shows that the rectification is proportional to the difference in the power-law exponents of the two materials, multiplied by a geometric correction function. The resulting predictions have no free parameters and are in good agreement with the experimental results from the literature. For maximum rectification, the thermal resistances of the two segments should be matched to each other at low thermal bias. For end point temperatures of 300 K and 100 K, using common bulk materials it is practical to design a rectifier with rectification of well over one hundred percent. A new quantity, the normalized thermal rectification, is proposed to better facilitate comparisons of various rectification mechanisms across different temperature ranges.

1.
Saha
,
S.
,
Shi
,
L.
, and
Prasher
,
R.
, 2006, “
Monte Carlo Simulation of Phonon Backscattering in a Nanowire
,”
ASME International Mechanical Engineering Congress and Exposition
, Chicago, p.
15668
.
2.
Barzelay
,
M. H.
,
Tong
,
K. N.
, and
Holloway
,
G. F.
, 1955, “
Effects of Pressure on Thermal Conductance of Contact Joints, NACA Technical Note 3295
,” Technical Report No. 3295.
3.
O’Callaghan
,
P. W.
,
Probert
,
S. D.
, and
Jones
,
A.
, 1970, “
A Thermal Rectifier
,”
J. Phys. D
0022-3727,
3
(
9
), pp.
1352
1358
.
4.
Walker
,
D. G.
, 2006, “
Thermal Rectification Mechanisms Including Noncontinuum Effects
,”
Joint ASME-ISHMT Heat Transfer Conference
, Guwahati, India.
5.
Terraneo
,
M.
,
Peyrard
,
M.
, and
Casati
,
G.
, 2002, “
Controlling the Energy Flow in Nonlinear Lattices: A Model for a Thermal Rectifier
,”
Phys. Rev. Lett.
0031-9007,
88
(
9
), p.
094302
.
6.
Li
,
B.
,
Wang
,
L.
, and
Casati
,
G.
, 2004, “
Thermal Diode: Rectification of Heat Flux
,”
Phys. Rev. Lett.
0031-9007,
93
(
18
), p.
184301
.
7.
Segal
,
D.
, and
Nitzan
,
A.
, 2005, “
Spin-Boson Thermal Rectifier
,”
Phys. Rev. Lett.
0031-9007,
94
(
3
), p.
034301
.
8.
Eckmann
,
J. -P.
, and
Mejia-Monasterio
,
C.
, 2006, “
Thermal Rectification in Billiardlike Systems
,”
Phys. Rev. Lett.
0031-9007,
97
(
9
), p.
094301
.
9.
Peyrard
,
M.
, 2006, “
The Design of a Thermal Rectifier
,”
Europhys. Lett.
0295-5075,
76
(
1
), pp.
49
55
.
10.
Hu
,
B.
,
He
,
D.
,
Yang
,
L.
, and
Zhang
,
Y.
, 2006, “
Thermal Rectifying Effect in Macroscopic Size
,”
Phys. Rev. E
1063-651X,
74
(
6
), p.
060201
.
11.
Ming
,
Y.
,
Wang
,
Z. X.
,
Li
,
Q.
, and
Ding
,
Z. J.
, 2007, “
Nonlinear Thermal Properties of Three-Terminal Mesoscopic Dielectric Systems
,”
Appl. Phys. Lett.
0003-6951,
91
(
14
), p.
143508
.
12.
Roberts
,
N. A.
, and
Walker
,
D. G.
, 2008, “
Monte Carlo Study of Thermal Transport of Frequency and Direction Dependent Reflecting Boundaries in High Kn Systems
,”
ITHERM: 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
, Orlando, FL, pp.
993
998
.
13.
Dames
,
C.
, and
Miller
,
J. P.
, “
Ballistic-Elastic Thermal Rectification
,” in preparation.
14.
Chang
,
C. W.
,
Okawa
,
D.
,
Majumdar
,
A.
, and
Zettl
,
A.
, 2006, “
Solid-State Thermal Rectifier
,”
Science
0036-8075,
314
(
5802
), pp.
1121
1124
.
15.
Balcerek
,
K.
, and
Tyc
,
T.
, 1978, “
Heat Flux Rectification in Tin-Alpha-Brass System
,”
Phys. Status Solidi A
,
47
(
2
), pp.
K125
K128
. 0031-8957
16.
Jezowski
,
A.
, and
Rafalowicz
,
J.
, 1978, “
Heat-Flow Asymmetry on a Junction of Quartz With Graphite
,”
Phys. Status Solidi A
0031-8965,
47
(
1
), pp.
229
232
.
17.
Marucha
,
C.
,
Mucha
,
J.
, and
Rafałowicz
,
J.
, 1975, “
Heat Flow Rectification in Inhomogeneous GaAs
,”
Phys. Status Solidi A
0031-8965,
31
(
1
), pp.
269
273
.
18.
Although Balcerek and Tyc stated that they made theoretical calculations based on Fourier’s law, which appear to be in very good agreement with their experiments, no modeling details were given.
19.
Marucha
,
C.
,
Mucha
,
J.
, and
Rafalowicz
,
J.
, 1976, “
Phenomenological Interpretation of Heat Flux Volume Rectification in Non-Homogeneous Media
,”
Phys. Status Solidi A
,
37
(
1
), pp.
K5
K7
. 0031-8957
20.
Hudson
,
P. R. W.
, 1976, “
Heat Flow Rectification
,”
Phys. Status Solidi A
,
37
(
1
), pp.
93
96
. 0031-8957
21.
Kokshenev
,
V. B.
,
Balcerek
,
K.
,
Tyc
,
T.
, and
Jezowski
,
A.
, 1984, “
Discussion of the Heat-Flux Rectification in the Solid-Solid System in the Acoustic-Mismatch Theory Framework
,”
Phys. Status Solidi A
0031-8965,
81
(
1
), pp.
171
176
.
22.
Hoff
,
H.
, 1985, “
Asymmetrical Heat Conduction in Inhomogeneous Materials
,”
Physica A
0378-4371,
131
(
2
), pp.
449
464
.
23.
Hoff
,
H.
, and
Jung
,
P.
, 1993, “
Experimental Observation of Asymmetrical Heat Conduction
,”
Physica A
0378-4371,
199
(
3–4
), pp.
502
516
.
24.
MAPLE, accessed through MATLAB.
25.
Shi
,
L.
, and
Mingo
,
N.
, 2007, private communication.
26.
Swartz
,
E. T.
, and
Pohl
,
R. O.
, 1989, “
Thermal-Boundary Resistance
,”
Rev. Mod. Phys.
0034-6861,
61
(
3
), pp.
605
668
.
27.
Cahill
,
D. G.
,
Ford
,
W. K.
,
Goodson
,
K. E.
,
Mahan
,
G. D.
,
Majumdar
,
A.
,
Maris
,
H. J.
,
Merlin
,
R.
, and
Phillpot
,
S. R.
, 2003, “
Nanoscale Thermal Transport
,”
J. Appl. Phys.
0021-8979,
93
(
2
), pp.
793
818
.
28.
Touloukian
,
Y. S.
, ed., 1970,
Thermophysical Properties of Matter
,
IFI/Plenum
,
New York
.
29.
Kim
,
P.
,
Shi
,
L.
,
Majumdar
,
A.
, and
Mceuen
,
P. L.
, 2001, “
Thermal Transport Measurements of Individual Multiwalled Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
87
(
21
), pp.
215502
.
30.
Unifraxcorp., Fiberfrax Low-Con Felt Datasheet, http://www.fiberfrax.com/http://www.fiberfrax.com/.
31.
Note: The effective thermal conductivity for thermal radiation is estimated using the radiation convection coefficient hrad=4σT3 where σ is the Stefan–Boltzmann constant, and k is calculated from k=hrad∗×MFP, where MFP is a photon mean free path taken as ∼1 mm.
You do not currently have access to this content.