Due to the complex nonlinear coupling of turbulent flow, finite-rate combustion chemistry and thermal radiation from combustion products and soot, modeling, and/or simulation of practical combustors, or even laboratory flames undergoing strong soot formation, remain elusive. Methods based on the determination of the probability density function of the joint thermochemical scalar variables offer a promising approach for handling turbulence-chemistry-radiation interactions in flames. Over the past decade, the development and application of the filtered mass density function (FMDF) approach in the context of large eddy simulations (LES) of turbulent flames have gained considerable ground. The work described here represents the first application of the LES/FMDF approach to flames involving soot formation and luminous radiation. The initial focus here is on the use of a flamelet soot model in an idealized strongly radiating turbulent jet flame, which serves to detail the formulation, highlight the importance of turbulence-radiation interactions, and pave the way for the inclusion of a soot transport and finite-rate kinetics model allowing for quantitative comparisons to laboratory scale sooting flames in the near future.

1.
Yang
,
B.
, and
Koylu
,
U. O.
, 2005, “
Detailed Soot Field in a Turbulent Non-Premixed Ethylene/Air Flame From Laser Scattering and Extinction Experiments
,”
Combust. Flame
,
141
, pp.
55
65
. 0010-2180
2.
Jacobson
,
M.
, 2001, “
Strong Radiative Heating Due to the Mixing State of Black Carbon in Atmospheric Aerosols
,”
Nature (London)
0028-0836,
409
, pp.
695
697
.
3.
Mungekar
,
H.
, and
Atreya
,
A.
, 2006, “
Flame Radiation and Soot Emission From Partially Premixed Methane Counterflow Flames
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
361
367
.
4.
Zheng
,
Y.
,
Barlow
,
R. S.
, and
Gore
,
J.
, 2003, “
Measurements and Calculations of Spectral Radiation Intensities for Turbulent Non-Premixed and Partially Premixed Flames
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
678
686
.
5.
Pope
,
S. B.
, 1985, “
PDF Methods for Turbulent Reacting Flows
,”
Prog. Energy Combust. Sci.
0360-1285,
11
, pp.
119
192
.
6.
Xu
,
J.
, and
Pope
,
S. B.
, 2000, “
PDF Calculations of Turbulent Nonpremixed Flames With Local Extinction
,”
Combust. Flame
0010-2180,
123
, pp.
281
307
.
7.
James
,
S.
,
Anand
,
M. S.
,
Razdan
,
M. K.
, and
Pope
,
S. B.
, 2001, “
In Situ Detailed Chemistry Calculations in Combustor Flow Analyses
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
123
, pp.
747
756
.
8.
Fox
,
R. O.
, 2003,
Computational Models for Turbulent Reacting Flows
,
Cambridge University Press
,
Cambridge, England
.
9.
Mazumder
,
S.
, and
Modest
,
M. F.
, 1999, “
A PDF Approach to Modeling Turbulence-Radiation Interactions in Nonluminous Flames
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
971
991
.
10.
Li
,
G.
, and
Modest
,
M. F.
, 2003, “
Importance of Turbulence-Radiation Interactions in Turbulent Diffusion Jet Flames
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
831
838
.
11.
Aksit
,
I. M.
, and
Moss
,
J. B.
, 2006, “
A Hybrid Scalar Model for Sooting Turbulent Flames
,”
Combust. Flame
,
145
, pp.
231
244
. 0010-2180
12.
Jaberi
,
F. A.
,
Colucci
,
P. J.
,
James
,
S.
,
Givi
,
P.
, and
Pope
,
S. B.
, 1999, “
Filtered Mass Density Function for Large-Eddy Simulation of Turbulent Reacting Flows
,”
J. Fluid Mech.
0022-1120,
401
, pp.
85
121
.
13.
Sheikhi
,
M. R. H.
,
Drozda
,
T. G.
,
Givi
,
P.
,
Jaberi
,
F. A.
, and
Pope
,
S. B.
, 2005, “
Large Eddy Simulation of a Turbulent Nonpremixed Piloted Methane Jet Flame (Sandia Flame D)
,”
Proc. Combust. Inst.
1540-7489,
30
, pp.
549
556
.
14.
Raman
,
V.
, and
Pitsch
,
H.
, 2005, “
LES/Filtered Density Function Simulation of Turbulent Combustion With Detailed Chemistry
,” Annual Research Briefs, Center for Turbulence Research, NASA Ames/Stanford University, pp.
297
308
.
15.
Sivathanu
,
Y.
, and
Faeth
,
G. M.
, 1990, “
Soot Volume Fractions in the Overfire Region of Turbulent Diffusion Flames
,”
Combust. Flame
0010-2180,
81
, pp.
133
149
.
16.
Sagaut
,
P.
, 2006,
Large Eddy Simulation for Incompressible Flows: An Introduction
, 3rd ed.,
Springer
,
New York
.
17.
Meneveau
,
C.
,
Lund
,
T.
, and
Cabot
,
W.
, 1996, “
A Lagrangian Dynamic Subgrid-Scale Model of Turbulence
,”
J. Fluid Mech.
0022-1120,
319
, pp.
353
385
.
18.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
, 1991, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids A
0899-8213,
3
(
7
), pp.
1760
1765
.
19.
Glaze
,
D. J.
, 2006, “
Large Eddy Simulation of a Turbulent Jet Diffusion Flame Using the Filtered Density Mass Function Model
,” Ph.D. thesis, Department of Mechanical Engineering, Purdue University.
20.
Lele
,
S. K.
, 1992, “
Compact Finite Difference Schemes With Spectral-Like Resolution
,”
J. Comput. Phys.
0021-9991,
103
, pp.
16
42
.
21.
Carpenter
,
M. H.
,
Gottlieb
,
D.
, and
Abarbanel
,
S.
, 1993, “
The Stability of Numerical Boundary Treatments for Compact High-Order Finite-Difference Schemes
,”
J. Comput. Phys.
0021-9991,
108
, pp.
272
295
.
22.
Hoffman
,
J. D.
, 1992,
Numerical Methods for Engineers and Scientists
,
McGraw-Hill
,
New York
.
23.
Poinsot
,
T. J.
, and
Lele
,
S. K.
, 1992, “
Boundary Conditions for Direct Simulations of Compressible Viscous Flows
,”
J. Comput. Phys.
0021-9991,
101
, pp.
104
129
.
24.
Pakdee
,
W.
, and
Mahalingam
,
S.
, 2003, “
An Accurate Method to Implement Boundary Conditions for Reacting Flows Based on Characteristic Wave Analysis
,”
Combust. Theory Modell.
1364-7830,
7
, pp.
705
729
.
25.
Amielh
,
M.
,
Djeridane
,
T.
,
Anselmet
,
F.
, and
Fulachier
,
L.
, 1996, “
Velocity Near-Field of Variable Density Turbulent Jets
,”
Int. J. Heat Mass Transfer
,
39
(
10
), pp.
2149
2164
. 0017-9310
26.
Muradoglu
,
M.
,
Pope
,
S.
, and
Caughey
,
D.
, 2001, “
The Hybrid Method for the PDF Equations of Turbulent Reactive Flows: Consistency Conditions and Correction Algorithms
,”
J. Comput. Phys.
0021-9991,
172
, pp.
841
878
.
27.
Dopazo
,
C.
, and
O’Brien
,
E. E.
, 1974, “
An Approach to the Autoignition of a Turbulent Mixture
,”
Acta Astronaut.
0094-5765,
1
, pp.
1239
1266
.
28.
Kennedy
,
I. M.
, 1997, “
Models of Soot Formation and Oxidation
,”
Prog. Energy Combust. Sci.
0360-1285,
23
, pp.
95
132
.
29.
Gore
,
J. P.
, 1986, “
A Theoretical and Experimental Study of Turbulent Flame Radiation
,” Ph.D. thesis, Department of Mechanical Engineering, Pennsylvania State University.
30.
Modest
,
M. F.
, 2003,
Radiative Heat Transfer
,
Academic
,
New York
.
31.
Kent
,
J. H.
, and
Honnery
,
D.
, 1987, “
Soot and Mixture Fraction in Turbulent Diffusion Flames
,”
Combust. Sci. Technol.
0010-2202,
54
, pp.
383
397
.
32.
Chandy
,
A. J.
,
Glaze
,
D. J.
, and
Frankel
,
S. H.
, 2007, “
Parallelizing the Discrete Ordinates Method (DOM) for Three-Dimensional Radiative Heat Transfer Calculations Using a Priority Queuing Technique
,”
Numer. Heat Transfer, Part B
1040-7790,
52
, pp.
33
49
.
33.
Kabashnikov
,
V. P.
, and
Myasnikova
,
G. I.
, 1985, “
Thermal Radiation in Turbulent Flows-Temperature and Concentration Fluctuations
,”
Heat Transfer-Sov. Res.
0440-5749,
17
, pp.
116
125
.
34.
Song
,
T.
, and
Viskanta
,
R.
, 1987, “
Interaction of Radiation With Turbulence: Application to a Combustion System
,”
J. Thermophys. Heat Transfer
0887-8722,
1
(
1
), pp.
56
62
.
35.
Pitsch
,
H.
, 2006, “
Large Eddy Simulation of Turbulent Combustion
,”
Annu. Rev. Fluid Mech.
0066-4189,
38
, pp.
453
482
.
36.
Brookes
,
S. J.
, and
Moss
,
J. B.
, 1999, “
Predictions of Soot and Thermal Radiation Properties in Confined Turbulent Jet Diffusion Flames
,”
Combust. Flame
,
116
, pp.
486
503
. 0010-2180
37.
Singh
,
J.
,
Patterson
,
R. I. A.
,
Kraft
,
M.
, and
Wang
,
H.
, 2006, “
Numerical Simulation and Sensitivity Analysis of Detailed Soot Particle Size Distribution in Laminar Premixed Ethylene Flames
,”
Combust. Flame
,
145
, pp.
117
127
. 0010-2180
38.
Sivathanu
,
Y. R.
,
Gore
,
J. P.
, and
Dolinar
,
J.
, 1991, “
Transient Scalar Properties of Strongly Radiating Jet Flames
,”
Combust. Sci. Technol.
0010-2202,
76
, pp.
45
66
.
39.
Steinberger
,
C. J.
,
Vidoni
,
T. J.
, and
Givi
,
P.
, 1993, “
Compositional Structure and the Effects of Exothermicity in a Nonpremixed Planar Jet Flame
,”
Combust. Flame
0010-2180,
94
, pp.
217
232
.
40.
Coppalle
,
A.
, and
Joyeux
,
D.
, 1994, “
Temperature and Soot Volume Fraction in Turbulent Diffusion Flames: Measurements of Mean and Fluctuating Values
,”
Combust. Flame
,
96
, pp.
275
285
. 0010-2180
You do not currently have access to this content.