Microscale transport mechanisms play a critical role in the thermal processing of materials because changes in the structure and characteristics of the material largely occur at these or smaller length scales. The heat transfer and fluid flow considerations determine the properties of the final product, such as in a crystal drawn from silicon melt or a gel from the chemical conversion of a biopolymer. Also, a wide variety of material fabrication processes, such as the manufacture of optical glass fiber for telecommunications, fabrication of thin films by chemical vapor deposition, and surface coating, involve microscale length scales due to the requirements on the devices and applications for which they are intended. For example, hollow fibers, which are used for sensors and power delivery, typically need fairly precise microscale wall thicknesses and hole diameters for satisfactory operation. The basic transport mechanisms underlying these processes are discussed in this review paper. The importance of material characterization in accurate modeling and experimentation is brought out, along with the coupling between the process and the resulting properties such as uniformity, concentricity, and diameter. Of particular interest are thermally induced defects and other imperfections that may arise due to the transport phenomena involved at these microscale levels. Additional aspects such as surface tension, stability, and free surface characteristics that affect the material processing at microscale dimensions are also discussed. Some of the important methods to treat these problems and challenges are presented. Characteristic numerical and experimental results are discussed for a few important areas. The implications of such results in improving practical systems and processes, including enhanced process feasibility and product quality, are also discussed.

1.
Jaluria
,
Y.
, 2003, “
Thermal Processing of Materials: From Basic Research to Engineering
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
957
979
.
2.
Jaluria
,
Y.
, 2006, “
Numerical Modeling of Manufacturing Processes
,”
Handbook of Numerical Heat Transfer
,
W. J.
Minkowycz
,
E. M.
Sparrow
, and
J.
Murthy
, eds.,
Wiley
,
New York
, pp.
729
784
.
3.
Szekely
,
J.
, 1979,
Fluid Flow Phenomena in Metals Processing
,
Academic
,
New York
.
4.
Viskanta
,
R.
, 1988, “
Heat Transfer During Melting and Solidification of Metals
,”
ASME J. Heat Transfer
,
110
, pp.
1205
1219
. 0022-1481
5.
Li
,
T.
, ed., 1985,
Optical Fiber Communications
, Vol.
1
,
Academic
,
New York
.
6.
Poulikakos
,
D.
, ed., 1996, “
Transport Phenomena in Materials Processing
,”
Adv. Heat Transfer
,
28
, pp.
1
425
. 0022-1481
7.
Paek
,
U. C.
, 1999, “
Free Drawing and Polymer Coating of Silica Glass Optical Fibers
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
774
788
.
8.
Fitt
,
A. D.
,
Furusawa
,
K.
,
Monro
,
T. M.
, and
Please
,
C. P.
, 2001, “
Modeling the Fabrication of Hollow Fibers: Capillary Drawing
,”
J. Lightwave Technol.
0733-8724,
19
, pp.
1924
1931
.
9.
van Eijkelenborg
,
M. A.
,
Argyros
,
A.
,
Barton
,
G.
,
Bassett
,
I. M.
,
Fellew
,
M.
,
Henry
,
G.
,
Issa
,
N. A.
,
Large
,
M. C. J.
,
Manos
,
S.
,
Padden
,
W.
,
Poladian
,
L.
, and
Zagari
,
J.
, 2003, “
Recent Progress in Microstructured Polymer Optical Fibre Fabrication and Characterisation
,”
Opt. Fiber Technol.
1068-5200,
9
, pp.
199
209
.
10.
Paek
,
U. C.
, and
Runk
,
R. B.
, 1978, “
Physical Behavior of the Neck-Down Region During Furnace Drawing of Silica Fibers
,”
J. Appl. Phys.
0021-8979,
49
, pp.
4417
4422
.
11.
Myers
,
M. R.
, 1989, “
A Model for Unsteady Analysis of Preform Drawing
,”
AIChE J.
0001-1541,
35
, pp.
592
602
.
12.
Lee
,
S. H.-K.
, and
Jaluria
,
Y.
, 1997, “
Simulation of the Transport Process in the Neck-Down Region of a Furnace Drawn Optical Fiber
,”
Int. J. Heat Mass Transfer
0017-9310,
40
(
4
), pp.
843
856
.
13.
Choudhury
,
R. S.
, and
Jaluria
,
Y.
, 1998, “
Thermal Transport Due to Material and Gas Flow in a Furnace for Drawing an Optical Fiber
,”
J. Mater. Res.
,
13
(
2
), pp.
494
503
. 0884-2914
14.
Choudhury
,
R. S.
,
Jaluria
,
Y.
, and
Lee
,
S. H.-K.
, 1999, “
“A Computational Method for Generating the Free-Surface Neck-Down Profile for Glass Flow in Optical Fiber Drawing
,”
Numer. Heat Transfer, Part A
1040-7782,
35
, pp.
1
24
.
15.
Yin
,
Z.
, and
Jaluria
,
Y.
, 1998, “
Thermal Transport and Flow in High-Speed Optical Fiber Drawing
,”
ASME J. Heat Transfer
0022-1481,
120
, pp.
916
930
.
16.
Wei
,
Z.
,
Lee
,
K.
,
Tchikanda
,
S. W.
,
Zhou
,
Z.
, and
Hong
,
S.
, 2004, “
Free Surface Flow in High Speed Fiber Drawing With Large-Diameter Glass Preforms
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
713
722
.
17.
Cheng
,
X.
, and
Jaluria
,
Y.
, 2004, “
Feasibility of High Speed Furnace Drawing of Optical Fibers
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
852
857
.
18.
Paek
,
U. C.
, 1986, “
High-Speed High-Strength Fiber Drawing
,”
J. Lightwave Technol.
,
4
(
8
), pp.
1048
1060
. 0733-8724
19.
Chen
,
C.
, and
Jaluria
,
Y.
, 2007, “
Numerical Simulation of Transport in Optical Fiber Drawing With Core-Cladding Structure
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
559
567
.
20.
Izawa
,
T.
, and
Sudo
,
S.
, 1987,
Optical Fibers: Materials and Fabrication
,
KTK Scientific
,
Tokyo
.
21.
Chen
,
C.
, 2007, “
Transport Processes in Drawing of Optical Fibers With Core-Cladding Structure
,” Ph.D. thesis, Rutgers University, New Brunswick, NJ.
22.
Chakravarthy
,
S. S.
, and
Chiu
,
W. K. S.
, 2005, “
Collapse Prediction During Hollow Optical Fiber Fabrication
,”
2005 ASME Summer Heat Transfer Conference
, San Francisco, CA.
23.
Yang
,
Y.
, and
Jaluria
,
Y.
, 2008, “
Transport Processes Governing the Drawing of a Hollow Optical Fiber
,”
ASME Summer Heat Transfer Conference
, Jacksonville, FL.
24.
Quere
,
D.
, 1999, “
Fluid Coating on a Fiber
,”
Annu. Rev. Fluid Mech.
0066-4189,
31
, pp.
347
384
.
25.
Ravinulata
,
S.
, and
Polymeropoulos
,
C. E.
, 2002, “
Entrance Meniscus in a Pressurized Optical Fiber Coating Applicator
,”
Exp. Therm. Fluid Sci.
0894-1777,
26
, pp.
573
580
.
26.
Yoo
,
S. Y.
, and
Jaluria
,
Y.
, 2007, “
Fluid Flow and Heat Transfer in an Optical Fiber Coating Process
,”
Int. J. Heat Mass Transfer
,
50
, pp.
1176
1185
. 0017-9310
27.
Ravinutala
,
S.
,
Polymeropoulos
,
C. E.
,
Jaluria
,
Y.
,
Elliott
,
G.
, and
Finberg
,
G.
, 2001, “
Experimental and Calculated Velocity Distributions Within a Pressurized Optical Fiber Coating Applicator
,”
Proceedings of the 50th International Wire Cable Symposium
, Orlando, FL.
28.
Mahajan
,
R. L.
, 1996, “
Transport Phenomena in Chemical Vapor-Deposition Systems
,”
Adv. Heat Transfer
0065-2717,
28
, pp.
339
425
.
29.
Eversteyn
,
F. C.
,
Severin
,
P. J. W.
,
Brekel
,
C. H. J.
, and
Peek
,
H. L.
, 1970, “
A Stagnant Layer Model for the Epitaxial Growth of Silicon From Silane in a Horizontal Reactor
,”
J. Electrochem. Soc.
0013-4651,
117
, pp.
925
931
.
30.
Mahajan
,
R. L.
, and
Wei
,
C.
, 1991, “
Buoyancy, Soret, Dufour and Variable Property Effects in Silicon Epitaxy
,”
ASME J. Heat Transfer
0022-1481,
113
, pp.
688
695
.
31.
Chiu
,
W. K. S.
, and
Jaluria
,
Y.
, 2000, “
Continuous Chemical Vapor Deposition Processing With a Moving Finite Thickness Susceptor
,”
J. Mater. Res.
,
15
, pp.
317
328
. 0884-2914
32.
Yoo
,
H.
, and
Jaluria
,
Y.
, 2002, “
Thermal Aspects in the Continuous Chemical Vapor Deposition of Silicon
,”
ASME J. Heat Transfer
0022-1481,
124
, pp.
938
946
.
33.
Beckermann
,
C.
, and
Wang
,
C. Y.
, 1995, “
Multiphase/-Scale Modeling of Alloy Solidification
,”
Annu. Rev. Heat Transfer
1049-0787,
6
, pp.
115
198
.
34.
Wang
,
S. S.
,
Chiang
,
C. C.
,
Yeh
,
A. I.
,
Zhao
,
B.
, and
Kim
,
I. H.
, 1989, “
Kinetics of Phase Transition of Waxy Corn Starch at Extrusion Temperatures and Moisture Contents
,”
J. Food. Sci.
,
54
, pp.
1298
1301
. 0022-1147
35.
Chiruvella
,
R. V.
,
Jaluria
,
Y.
, and
Karwe
,
M. V.
, 1996, “
Numerical Simulation of Extrusion Cooking of Starchy Materials
,”
J. Food. Eng.
0260-8774,
30
, pp.
449
467
.
36.
Zhu
,
W.
, and
Jaluria
,
Y.
, 2001, “
Residence Time and Conversion in the Extrusion of Chemically Reactive Materials
,”
Polym. Eng. Sci.
0032-3888,
41
, pp.
1280
1291
.
37.
Hanafusa
,
H.
,
Hibino
,
Y.
, and
Yamamoto
,
F.
, 1985, “
Formation Mechanism of Drawing-Induced E’ Centers in Silica Optical Fibers
,”
J. Appl. Phys.
0021-8979,
58
(
3
), pp.
1356
1361
.
You do not currently have access to this content.