In this paper, a nonlinear problem for combined convective and radiative cooling of a spherical body is considered. This problem represents a strong nonlinearity in both the governing equation and the boundary condition. Analytic approximations for the solution of this problem are obtained using the homotopy analysis method and via a polynomial exponential basis. Also, the effect of the radiation-conduction parameter and the Biot number Bi for the temperature on the surface of the spherical body is investigated and discussed.
1.
Haji-Sheikh
, A.
, and Sparrow
, E. M.
, 1967, “Solution of Heat Conduction Problems by Probability Methods
,” Trans. ASME, Ser. C: J. Heat Transfer
0022-1481, 89
, pp. 121
–131
.2.
Crosbie
, A. L.
, and Viskanta
, R.
, 1968, “Transient Heating or Cooling of a Plate by Combined Convection and Radiation
,” Int. J. Heat Mass Transfer
0017-9310, 11
, pp. 305
–317
.3.
Davies
, T. W.
, 1985, “The Cooling of a Plate by Combined Thermal-Radiation and Convection
,” Int. Commun. Heat Mass Transfer
0735-1933, 12
, pp. 405
–415
.4.
Sunden
, B.
, 1986, “Transient Heat-Conduction in a Composite Slab by a Time Varying Incident Heat-Flux Combined With Convective and Radiative Cooling
,” Int. Commun. Heat Mass Transfer
0735-1933, 13
, pp. 515
–522
.5.
Sunden
, B.
, 1989, “Transient Conduction in a Cylindrical-Shell With a Time Varying Incident Surface Heat-Flux and Convective and Radiative Surface Cooling
,” Int. J. Heat Mass Transfer
0017-9310, 32
, pp. 575
–584
.6.
Parang
, M.
, Crocker
, D. S.
, and Haynes
, B. D.
, 1990, “Perturbation Solution for Spherical and Cylindrical Solidification by Combined Convective and Radiative Cooling
,” Int. J. Heat Fluid Flow
0142-727X, 11
, pp. 142
–148
.7.
Siegel
, R.
, 1996, “Transient Heat Transfer in a Semitransparent Radiating Layer With Boundary Convection and Surface Reflections
,” Int. J. Heat Mass Transfer
0017-9310, 39
, pp. 69
–79
.8.
Su
, J.
, 2004, “Improved Lumped Models for Transient Radiative Cooling of a Spherical Body
,” Int. Commun. Heat Mass Transfer
0735-1933, 31
, pp. 85
–94
.9.
Liao
, S. J.
, 1992, “The Proposed Homotopy Analysis Technique for the Solutions of Nonlinear Problems
,” Ph.D. thesis, Shanghai Jiao Tong University, Shanghai.10.
Liao
, S. J.
, 1999, “An Explicit Totally Analytic Approximate Solution for Blasius Viscous Flow Problems
,” Int. J. Non-Linear Mech.
0020-7462, 34
, pp. 759
–769
.11.
Liao
, S. J.
, 2002, “An Analytic Approximation of the Drag Coefficient for the Viscous Flow Past a Sphere
,” Int. J. Non-Linear Mech.
0020-7462, 37
, pp. 1
–18
.12.
Liao
, S. J.
, 2003, Beyond Perturbation: Introduction to Homotopy Analysis Method
, Chapman and Hall
, London
/CRC
, Boca Raton, FL
.13.
Cole
, J. D.
, 1968, Perturbation Methods in Applied Mathematics
, Blaisdell
, Waltham
.14.
Nayfeh
, A. H.
, 1981, Introduction to Perturbation Techniques
, Wiley
, New York
.15.
Murdock
, J. A.
, 1991, Perturbations: Theory and Methods
, Wiley
, New York
.16.
Bush
, A. W.
, 1992, Perturbation Methods For Engineers and Scientists
, CRC, Library of Engineering Mathematics
, Boca Raton, FL
.17.
Nayfeh
, A. H.
, 2000, Perturbation Methods
, Wiley
, New York
.18.
Lyapunov
, A. M.
, 1992, General Problem on Stability of Motion
, Taylor & Francis
, London
.19.
Karmishin
, A. V.
, Zhukov
, A. T.
, and Kolosov
, V. G.
, 1990, Methods of Dynamics Calculation and Testing for Thin-Walled Structures
, Mashinostroyenie
, Moscow
.20.
Adomian
, G.
, 1988, “A Review of the Decomposition Method in Applied Mathematics
,” J. Math. Anal. Appl.
0022-247X, 135
, pp. 501
–544
.21.
Adomian
, G.
, 1991, “A Review of the Decomposition Method and Some Recent Results for Nonlinear Equations
,” Comput. Math. Appl.
0898-1221, 21
, pp. 101
–127
.22.
Adomian
, G.
, 1994, “Solution of Physical Problems by Decomposition
,” Comput. Math. Appl.
0898-1221, 27
, pp. 145
–154
.23.
Adomian
, G.
, 1994, Solving Frontier Problems of Physics: The Decomposition Method
, Kluwer Academic
, Boston, MA
.24.
Liao
, S. J.
, 2003, “An Explicit Analytic Solution to the Thomas-Fermi Equation
,” Appl. Math. Comput.
0096-3003, 144
, pp. 495
–506
.25.
Liao
, S. J.
, 2003, “On the Analytic Solution of Magnetohydrodynamic Flows of Non-Newtonian Fluids Over a Stretching Sheet
,” J. Fluid Mech.
0022-1120, 488
, pp. 189
–212
.26.
Liao
, S. J.
, 2003, “An Analytic Approximate Technique for Free Oscillations of Positively Damped Systems With Algebraically Decaying Amplitude
,” Int. J. Non-Linear Mech.
0020-7462, 38
, pp. 1173
–1183
.27.
Xu
, H.
, Liao
, S. J.
, and Pop
, I.
, 2006, “Series Solutions of Unsteady Boundary Layer Flow of a Micropolar Fluid Near the Forward Stagnation Point of a Plane Surface
,” Acta Mech.
0001-5970, 184
, pp. 87
–101
.28.
Liao
, S. J.
, and Tan
, Y.
, 2007, “A General Approach to Obtain Series Solutions of Nonlinear Differential Equations
,” Stud. Appl. Math.
0022-2526, 119
, pp. 297
–355
.29.
Bouremel
, Y.
, 2007, “Explicit Series Solution for the Glauert-Jet Problem by Means of the Homotopy Analysis Method
,” Commun. Nonlinear Sci. Numer. Simul.
1007-5704, 12
, pp. 714
–724
.30.
Hayat
, T.
, and Sajid
, M.
, 2007, “On Analytic Solution for Thin Film Flow of a Fourth Grade Fluid Down a Vertical Cylinder
,” Phys. Lett. A
0375-9601, 361
, pp. 316
–322
.31.
Liao
, S. J.
, Su
, J.
, and Chwang
, A. T.
, 2006, “Series Solutions for a Nonlinear Model of Combined Convective and Radiative Cooling of a Spherical Body
,” Int. J. Heat Mass Transfer
0017-9310, 49
, pp. 2437
–2445
.Copyright © 2009
by American Society of Mechanical Engineers
You do not currently have access to this content.