A transient heat and mass transfer model is formulated to describe radiative heating of ceramic precursor droplets in a nonconvective environment. Heating causes vaporization of solvent from the droplet and concentration of the solute within the droplet leading to precipitation of the solute. It is found that the temperatures within the droplets are fairly uniform, but show different spatial profiles depending on the characteristics of solute absorptivity and duration of radiative heating. Incident laser irradiance and wavelength were found to play a significant role in the temperature profiles within droplets due to the absorption characteristics of the solute and the solvent. Lower levels of incident laser irradiation allows longer times for mass diffusion within a droplet leading to a gradual increase of the solute concentration from its center to its surface. Based on an equilibrium homogeneous precipitation hypothesis, it is found that the droplets heated with low laser irradiance tend to form thick precipitate shells as compared to those exposed to higher irradiances and consequently faster rates of vaporization. Large droplets form thin shells through surface precipitation, while small droplets may precipitate into shells of varying thickness depending on the magnitude of irradiance. Comparisons with convective heating in a high temperature plasma indicate that, with proper tuning of the laser irradiance, similar internal temperatures and solute concentration distributions are achievable. These modeling results suggest that different particle morphologies can be obtained from processing of liquid ceramic precursor containing droplets by proper tailoring of radiation parameters (wavelength and irradiance level).

1.
Masters
,
K.
, 1985,
Spray Drying Handbook
, 4th ed.,
Wiley
,
New York
.
2.
Pawlowski
,
L.
,
The Science and Engineering of Thermal Spray Coatings
,
Wiley
,
Chichester
.
3.
Padture
,
N. P.
,
Schlichting
,
K. W.
,
Bhatia
,
T.
,
Ozturk
,
A.
,
Cetegen
,
B. M.
,
Jordan
,
E. H.
, and
Gell
,
M.
, 2001, “
Towards Durable Thermal Barrier Coatings With Novel Microstructures Deposited by Solution-Precursor Plasma Spray
,”
Acta Mater.
1359-6454,
49
, pp.
2251
2257
.
4.
Jordan
,
E. H.
,
Xie
,
L.
,
Ma
,
X.
,
Gell
,
M.
,
Padture
,
N. P.
,
Cetegen
,
B. M.
,
Ozturk
,
A.
,
Roth
,
J.
,
Xiao
,
T. D.
, and
Bryant
,
P. E.
, 2004, “
Superior Thermal Barrier Coatings Using Solution Precursor Plasma Spray
,”
J. Therm. Spray Technol.
1059-9630,
13
(
1
), pp.
57
65
.
5.
Bhatia
,
T.
,
Ozturk
,
A.
,
Xie
,
L.
,
Jordan
,
E. H.
,
Cetegen
,
B. M.
,
Gell
,
M.
,
Ma
,
X.
, and
Padture
,
N. P.
, 2002, “
Mechanisms of Ceramic Coating Deposition in Solution-Precursor Plasma Spray
,”
J. Mater. Res.
0884-2914,
17
(
9
), pp.
2363
2372
.
6.
Ozturk
,
A.
, and
Cetegen
,
B. M.
, 2004, “
Modeling of Plasma Assisted Formation of Ytrria Stabilized Zirconia From Liquid Precursors
,”
Mater. Sci. Eng., A
0921-5093,
384
, pp.
331
351
.
7.
Basu
,
S.
, and
Cetegen
,
B. M.
,2007, “
Modeling of Thermo-Physical Processes in Liquid Ceramic Precursor Droplets Injected into a Plasma Jet
,”
Int. J. Heat Mass Transfer
0017-9310,
50
(
17–18
), pp.
3278
3290
.
8.
Cohen
,
M. D.
,
Flagan
,
R. C.
, and
Seinfeld
,
J. H.
, 1987, “
Studiues of Concentrated Electrolyte Solutions Using the Electrodynamic Balance: Solution Nucleation
,”
J. Phys. Chem.
0022-3654,
91
, pp.
4583
4590
.
9.
Leong
,
K. H.
, 1987, “
Morphological Control of Particles Generated From the Evaporation of Solution Droplets: Theoretical Considerations
,”
J. Aerosol Sci.
0021-8502,
18
(
5
), pp.
511
524
.
10.
Borra
,
J. P.
, 2006, “
Topical Review: Nucleation and Aerosol Processing in Atmospheric Pressure Electrical Discharges: Powders Production, Coatings and Filtration
,”
J. Phys. D
0022-3727,
39
, pp.
R19
R54
.
11.
Oxtoby
,
D. W.
, 1992, “
Homogeneous Nucleation: Theory and Experiment
,”
J. Phys.: Condens. Matter
0953-8984,
4
, pp.
7627
7650
.
12.
Palermo
,
J. A.
, 1968, “
Crystallization
,”
Ind. Eng. Chem.
0019-7866,
60
(
4
), pp.
65
93
.
13.
Dombrovsky
,
L.
, and
Sazhin
,
S.
, 2003, “
Absorption of Thermal Radiation in a Semi-Transparent Spherical Droplet: A Simplified Model
,”
Int. J. Heat Fluid Flow
0142-727X,
24
, pp.
919
927
.
14.
Lage
,
P. L. C.
, and
Rangel
,
R. H.
, 1993, “
Single Droplet Vaporization Including Thermal Radiation Absorption
,”
J. Thermophys. Heat Transfer
0887-8722,
7
(
3
), pp.
502
509
.
15.
Sazhin
,
S. S.
,
Abdelghaffar
,
W. A.
,
Sazhina
,
E. M.
,
Mikhalovsky
,
S. V.
,
Meikle
,
S. T.
, and
Bai
,
C.
, 2004, “
Radiative Heating of Semi Transparent Diesel Fuel Droplets
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
105
109
.
16.
Abramzon
,
B.
, and
Sazhin
,
S. S.
, 2005, “
Droplet Vaporization Model in the Presence of Thermal Radiation
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
1868
1873
.
17.
Park
,
B. H.
, and
Armstrong
,
R. L.
, 1989, “
Laser Droplet Heating: Fast and Slow Heating Regimes
,”
Appl. Opt.
0003-6935,
28
(
17
), pp.
3671
3680
.
You do not currently have access to this content.