An experimental study of heat transfer in a radially rotating trapezoidal duct with two opposite walls roughened by 45deg staggered ribs and bleed from the apical side wall is performed. Centerline heat transfer variations on two rib-roughened surfaces are measured for radially outward flows with and without bleeds at test conditions of Reynolds number (Re), rotation number (Ro), and density ratio (Δρρ) in the ranges of 15,000–30,000, 0–0.8, and 0.04–0.31, respectively. Geometrical configurations and rotation numbers tested have considerably extended the previous experiences that offer practical applications to the trailing edge cooling of a gas turbine rotor blade. A selection of experimental data illustrates the individual and interactive influences of Re, Ro, and buoyancy number (Bu) on local heat transfer with and without bleeds. Local heat transfer results are generated with the influences of bleeds on the apical side examined to establish heat transfer correlations with Re, Ro, and Bu as the controlling flow parameters for design applications. The rotation of present trapezoidal duct with rib-roughened surfaces and air bleeds on the apical side worsens the impairing heat transfer impacts due to bleeds. Within the Ro range of 0.1–0.8, bleeds on the apical side of the rotating channel respectively produce 25–50% and 25–40% of heat transfer reductions from the rotational no-bleed references along the leading and trailing centerlines. Such heat transfer reductions due to the combined bleeds and Ro-Bu impacts need design precautions for turbine rotor blades.

1.
Taslim
,
M. E.
,
Li
,
T.
, and
Spring
,
S. D.
, 1995, “
Experimental Study of the Effects of Bleed Holes on Heat Transfer and Pressure Drop in Trapezoidal Passages With Tapered Turbulators
,”
ASME J. Turbomach.
0889-504X,
117
, pp.
281
289
.
2.
Shen
,
J. R.
,
Wang
,
Z.
,
Ireland
,
P.
,
Jones
,
T. V.
, and
Byerley
,
A. R.
, 1996, “
Heat Transfer Enhancement With a Turbine Blade Cooling Passage Using Ribs and Combinations of Ribs With Film Cooling Holes
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
428
434
.
3.
Ekkad
,
S. V.
,
Hung
,
Y.
, and
Han
,
J. C.
, 1998, “
Detailed Heat Transfer Distributions in Two-Pass Square Channels With Rib Turbulators and Bleed Holes
,”
Int. J. Heat Mass Transfer
0017-9310,
41
, pp.
3781
3791
.
4.
Thurman
,
D.
, and
Poinsatte
,
P.
, 2001, “
Experimental Heat Transfer and Bulk Air Temperature Measurements for a Multipass Internal Cooling Model With Ribs and Bleed
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
90
96
.
5.
Chanteloup
,
D.
, and
Bölics
,
A.
, 2002, “
Flow Characteristics in Two-Leg Internal Coolant Passages of Gas Turbine Airfoils With Film-Cooling Hole Ejection
,”
ASME J. Turbomach.
0889-504X,
124
, pp.
499
507
.
6.
Tafti
,
D. K.
, and
Vanka
,
S. P.
, 1991, “
A Numerical Study of the Effects of Spanwise Rotation on Turbulent Channel Flow
,”
Phys. Fluids A
0899-8213,
3
(
4
), pp.
642
656
.
7.
Morris
,
W. D.
, and
Aythan
,
T.
, 1979, “
Observations on the Influences of Rotation on Heat Transfer in the Coolant Channels of Gas Turbine Rotor Blades
,”
Proc. Inst. Mech. Eng.
0020-3483,
193
(
21
), pp.
303
311
.
8.
AI-Hadhrami
,
L.
,
Griffith
,
T. S.
, and
Han
,
J.-C.
, 2003, “
Heat Transfer in a Two-Pass Rotating Rectangular Channels (AR=2) With Five Different Orientations of 45-Deg V-Shaped Rib Turbulators
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
233
242
.
9.
Fann
,
S.
,
Yang
,
W.-J.
, and
Zhang
,
N.
, 1994, “
Local Heat Transfer in a Rotating Serpentine Passage With Rib-Roughened Surface
,”
Int. J. Heat Mass Transfer
0017-9310,
37
, pp.
217
228
.
10.
Ei-Husayni
,
H. A.
,
Taslim
,
M. E.
, and
Kercher
,
D. M.
, 1994, “
Experimental Heat Transfer Investigation of Stationary and Orthogonally Rotating Asymmetric and Symmetric Heated Smooth and Turbulated Channel
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
124
132
.
11.
Parsons
,
J. A.
,
Han
,
J. C.
, and
Zhang
,
Y.
, 1995, “
Effect of Model and Wall Heating Condition on Local Heat Transfer in a Rotating Two-Pass Square Channel With Rib Turbulators
,”
Int. J. Heat Mass Transfer
0017-9310,
38
, pp.
1151
1159
.
12.
Dutta
,
S.
, and
Han
,
J. C.
, 1996, “
Local Heat Transfer in Rotating and Ribbed Two-Pass Square Channels With Three Channel Orientations
,”
ASME J. Heat Transfer
0022-1481,
118
, pp.
578
584
.
13.
Murata
,
A.
, and
Mochizuki
,
S.
, 2001, “
Effect of Centrifugal Buoyancy on Turbulent Heat Transfer in an Orthogonally Rotating Square Duct With Transverse or Angled Rib Turbulators
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
3119
3133
.
14.
Liou
,
T.-M.
,
Chen
,
M.-Y.
, and
Tsai
,
M.-H.
, 2002, “
Fluid Flow and Heat Transfer in a Rotating Two-Pass Square Duct With In-Line 90-Deg Ribs
,”
ASME J. Turbomach.
0889-504X,
124
, pp.
260
268
.
15.
Willett
,
F. T.
, and
Bergles
,
A. E.
, 2002, “
Heat Transfer in Rotating Narrow Rectangular Pin-Fin Ducts
,”
Exp. Therm. Fluid Sci.
0894-1777,
25
, pp.
573
582
.
16.
Griffith
,
T. S.
,
AI-Hadhrami
,
L.
, and
Han
,
J.-C.
, 2003, “
Heat Transfer in Rotating Rectangular Cooling Channels (AR=4) With Dimples
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
555
563
.
17.
Murata
,
A.
, and
Mochizuki
,
S.
, 2003, “
Effect of Cross-Sectioned Aspect Ratio on Turbulent Heat Transfer in an Orthogonally Rotating Rectangular Duct With Angled Rib Turbulators
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
3119
3133
.
18.
Liou
,
T.-M.
,
Chen
,
M.-Y.
, and
Wang
,
Y.-M.
, 2003, “
Heat Transfer, Fluid Flow, and Pressure Measurements Inside a Rotating Two-Pass Duct With Detached 90-Deg Ribs
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
565
574
.
19.
Morris
,
W. D.
, 1996, “
A Rotating Facility to Study Heat Transfer in the Cooling Passage of Turbine Blades
,”
Proc. Inst. Mech. Eng., Part A
: J. Power and Energy 0957-6509,
210
, pp.
55
63
.
20.
Iskakov
,
K. M.
, and
Trushin
,
V. A.
, 1985, “
The Effect of Rotation on Heat Transfer in the Radial Cooling Channels of Turbine Blades
,”
Teploenergetika (Moscow, Russ. Fed.)
0040-3636,
32
(
2
), pp.
52
55
.
21.
Wagner
,
J. H.
,
Johnson
,
B. V.
,
Graziani
,
B. A.
, and
Yeh
,
F. C.
, 1992, “
Heat Transfer in Rotating Serpentine Passages With Trips Normal to the Flow
,”
ASME J. Turbomach.
0889-504X,
114
, pp.
847
857
.
22.
Johnson
,
B. V.
,
Wagner
,
J. H.
,
Steuber
,
G. D.
, and
Yeh
,
F. C.
, 1994, “
Heat Transfer in Rotating Serpentine Passages With Trip Skewed to the Flow
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
113
123
.
23.
Chang
,
S. W.
, and
Morris
,
W. D.
, 1998, “
A Comparative Study of Heat Transfer Between Rotating Circular Smooth-Walled and Square Rib-Roughened Ducts With Cooling Application for Gas Turbine Rotor Blades
,”
JSME Int. J., Ser. B
1340-8054,
41
(
2
), pp.
302
315
.
24.
Chang
,
S. W.
, and
Morris
,
W. D.
, 2003, “
Heat Transfer in a Radially Square Duct Fitted With In-line Transverse Ribs
,”
Adv. Electron. Electron Phys., Suppl.
0065-2547,
42
, pp.
267
282
.
25.
Chang
,
S. W.
,
Yang
,
T. L.
, and
Wang
,
W. J.
, 2006, “
Heat Transfer in a Rotating Twin-Pass Trapezoidal-Sectioned Passage Roughened by Skewed Ribs on Two Opposite Walls
,”
Heat Transfer Eng.
0145-7632,
27
(
10
), pp.
63
79
.
26.
Chang
,
S. W.
,
Liou
,
T.-M.
,
Yeh
,
W.-H.
, and
Hung
,
J.-H.
, 2007“
Heat Transfer in a Radially Rotating Square-Sectioned Duct With Two Opposite Walls Roughened by 45Degree Staggered Ribs at High Rotation Numbers
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
188
199
.
27.
JHT Editorial Board of ASME J. Heat Transfer, 1993, “
Journal of Heat Transfer Policy on Reporting Uncertainties in Experimental Measurements and Results
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
5
6
.
28.
Dittus
,
F. W.
, and
Boelter
,
L. M. K.
, 1930,
Univ. Calif. Publ. Eng.
0096-9311,
2
, p.
443
.
You do not currently have access to this content.