Motivated by the recent work of Christov and Jordan, (“Heat Conduction Paradox Involving Second-Sound Propagation in Moving Media,” 2005, Phys. Rev. Lett., 94, p. 154301), we examine the original single- and dual-phase-lagging heat conduction models without Taylor series approximation and their variants in moving media using the Galilean principle of relativity. It is found that the original single- and dual-phase-lagging heat conduction models are Galilean invariant and lead to a single governing equation even for the multidimensional media. However their variants violate the Galilean principle of relativity in the moving media. Although this paradox can be eliminated by replacing the partial time derivatives with the material derivatives, the resulting governing equations cannot be reduced to a single transport equation in the multidimensional media. Therefore we believe that the original single- and dual-phase-lagging heat conduction models are more advantageous in modeling the microscale heat conduction problems.

1.
Joseph
,
D. D.
, and
Preziosi
,
L.
, 1989, “
Heat Waves
,”
Rev. Mod. Phys.
0034-6861,
61
, pp.
41
73
.
2.
Joseph
,
D. D.
, and
Preziosi
,
L.
, 1990, “
Addendum to the Paper ‘Heat Waves’ [Rev. Mod. Phys. 61, 41 (1989)]
,”
Rev. Mod. Phys.
0034-6861,
62
, pp.
375
391
.
3.
Tzou
,
D. Y.
, 1996,
Macro- to Microscale Heat Transfer: The Lagging Behavior
,
Taylor & Francis
,
Washington, DC
.
4.
Tzou
,
D. Y.
, 1995, “
A Unified Field Approach for Heat Conduction From Micro- to Macro-Scales
,”
ASME J. Heat Transfer
0022-1481,
117
, pp.
8
16
.
5.
Tzou
,
D. Y.
, and
Zhang
,
Y. S.
, 1995, “
An Analytical Study on the Fast-Transient Process in Small Scales
,”
Int. J. Eng. Sci.
0020-7225,
33
, pp.
1449
1463
.
6.
Chandrasekharaiah
,
D. S.
, 1998, “
Hyperbolic Thermoelasticity: A Review of Recent Literature
,”
Appl. Mech. Rev.
,
51
, pp.
705
729
. 0003-6900
7.
Chandrasekharaiah
,
D. S.
, 1986, “
Thermoelasticity With Second Sound: A Review
,”
Appl. Mech. Rev.
,
39
, pp.
355
376
. 0003-6900
8.
Jou
,
D.
,
Casas-Vázquez
,
J.
, and
Lebon
,
G.
, 1999, “
Extended Irreversible Thermodynamics Revisited (1988–98)
,”
Rep. Prog. Phys.
0034-4885,
62
, pp.
1035
1142
.
9.
Onsager
,
L.
, 1931, “
Reciprocal Relations in Irreversible Process. I
,”
Phys. Rev.
0031-899X,
37
, pp.
405
426
.
10.
Jou
,
D.
,
Casas-Vázquez
,
J.
, and
Lebon
,
G.
, 2003,
Extended Irreversible Thermodynamics
,
Springer
,
Berlin
.
11.
Tien
,
C. L.
,
Majumdar
,
A.
, and
Gerner
,
F. M.
, 1998,
Microscale Energy Transport
,
Taylor & Francis
,
Washington, DC
.
12.
Lepri
,
S.
,
Livi
,
R.
, and
Politi
,
A.
, 2003, “
Thermal Conduction in Classical Low-Dimensional Lattices
,”
Phys. Rep.
0370-1573,
377
, pp.
1
80
.
13.
Li
,
B.
, and
Wang
,
J.
, 2003, “
Anomalous Heat Conduction and Anomalous Diffusion in One-Dimensional Systems
,”
Phys. Rev. Lett.
0031-9007,
91
, p.
044301
.
14.
Li
,
B.
,
Casati
,
G.
,
Wang
,
J.
, and
Prosen
,
T.
, 2004, “
Fourier Law in the Alternate-Mass-Hard-Core Potential Chain
,”
Phys. Rev. Lett.
0031-9007,
92
, p.
254301
.
15.
Narayan
,
O.
, and
Ramaswamy
,
S.
, 2002, “
Anomalous Heat Conduction in One-Dimensional Momentum-Conserving Systems
,”
Phys. Rev. Lett.
0031-9007,
89
, p.
200601
.
16.
Savin
,
A. V.
,
Tsironic
,
G. P.
, and
Zolotaryuk
,
A. V.
, 2002, “
Heat Conduction in One-Dimensional Systems With Hard-Point Interparticle Interactions
,”
Phys. Rev. Lett.
0031-9007,
88
, p.
154301
.
17.
Dhar
,
A.
, 2001, “
Heat Conduction in a One-Dimensional Gas of Elastically Colliding Particles of Unequal Masses
,”
Phys. Rev. Lett.
0031-9007,
86
, pp.
3554
3557
.
18.
Prosen
,
T.
, and
Campbell
,
D.
, 2000, “
Momentum Conservation Implies Anomalous Energy Transport in 1D Classical Lattices
,”
Phys. Rev. Lett.
0031-9007,
84
, pp.
2857
2860
.
19.
Giardiná
,
C.
,
Livi
,
R.
,
Politi
,
A.
, and
Vassalli
,
M.
, 2000, “
Finite Thermal Conductivity in 1D Lattices
,”
Phys. Rev. Lett.
0031-9007,
84
, pp.
2144
2147
.
20.
Qiu
,
T. Q.
, and
Tien
,
C. L.
, 1993, “
Heat Transfer Mechanisms During Short-Pulse Laser Heating of Metals
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
835
841
.
21.
Tang
,
D. W.
, and
Araki
,
N.
, 1999, “
Wavy, Wavelike, Diffusive Thermal Responses of Finite Rigid Slabs to High-Speed Heating of Laser-Pulses
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
855
860
.
22.
Han
,
P.
,
Tang
,
D. W.
, and
Zhou
,
L. P.
, 2006, “
Numerical Analysis of Two-Dimensional Lagging Thermal Behavior Under Short-Pulse-Laser Heating on Surface
,”
Int. J. Eng. Sci.
,
44
, pp.
1510
1519
. 0020-7225
23.
Cahill
,
D. G.
,
Ford
,
W. K.
,
Goodson
,
K. E.
,
Mahan
,
G. D.
,
Majumdar
,
A.
,
Maris
,
H. J.
,
Merlin
,
R.
, and
Phillpot
,
S. R.
, 2003, “
Nanoscale Thermal Transport
,”
J. Appl. Phys.
0021-8979,
93
, pp.
793
818
.
24.
Christov
,
C. I.
, and
Jordan
,
P. M.
, 2005, “
Heat Conduction Paradox Involving Second-Sound Propagation in Moving Media
,”
Phys. Rev. Lett.
0031-9007,
94
, p.
154301
.
25.
Ackerman
,
C. C.
,
Bertman
,
B.
,
Fairbank
,
H. A.
, and
Guyer
,
R. A.
, 1966, “
Second Sound in Solid Helium
,”
Phys. Rev. Lett.
0031-9007,
16
, pp.
789
791
.
26.
Jackson
,
H. E.
,
Walker
,
C. T.
, and
McNedlly
,
T. F.
, 1970, “
Second Sound in NaF
,”
Phys. Rev. Lett.
0031-9007,
25
(
1
), pp.
26
28
.
27.
Narayanamurti
,
V.
, and
Dynes
,
R. C.
, 1972, “
Observation of Second Sound in Bismuth
,”
Phys. Rev. Lett.
0031-9007,
28
(
22
), pp.
1461
1465
.
28.
Kaminski
,
W.
, 1990, “
Hyperbolic Heat Conduction Equation for Materials With a Nonhomogeneous Inner Structure
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
555
560
.
29.
Hehlen
,
B.
,
Perou
,
A.-L.
,
Courtens
,
E.
, and
Vacher
,
R.
, 1995, “
Observation of a Doublet in the Quasielastic Central Peak of Quantum-Paraelectric SrTiO3
,”
Phys. Rev. Lett.
0031-9007,
75
, pp.
2416
2419
.
30.
Roetzel
,
W.
,
Putra
,
N.
, and
Das
,
S. K.
, 2003, “
Experiment and Analysis for Non-Fourier Conduction in Materials With Non-Homogeneous Inner Structure
,”
Int. J. Therm. Sci.
,
42
, pp.
541
552
. 1290-0729
31.
Xu
,
M. T.
, and
Wang
,
L. Q.
, 2005, “
Dual-Phase-Lagging Heat Conduction Based on Boltzmann Transport Equation
,”
Int. J. Heat Mass Transfer
,
48
, pp.
5616
5624
. 0017-9310
32.
Cheng
,
L.
,
Xu
,
M. T.
, and
Wang
,
L. Q.
, 2008, “
Thermal Vibration Phenomenon of Single Phase Lagging Heat Conduction and its Thermodynamic Basis
,”
Chin. Sci. Bull.
,
53
(
6
), pp.
732
736
, in Chinese. 1001-6538
33.
Cheng
,
L.
,
Xu
,
M. T.
, and
Wang
,
L. Q.
, 2008, “
From Boltzmann Transport Equation to Single-Phase-Lagging Heat Conduction
,”
Int. J. Heat Mass Transfer
, doi:10.1016/j.ijheatmasstransfer.2008.04.004. 0017-9310
34.
Chester
,
M.
, 1963, “
Second Sound in Solids
,”
Phys. Rev.
0031-899X,
131
, pp.
2013
2015
.
35.
Guyer
,
R. A.
, and
Krumhansi
,
J. A.
, 1966, “
Solution of the Linearized Phonon Boltzmann Equation
,”
Phys. Rev.
0031-899X,
148
, pp.
766
778
.
36.
Kaganov
,
M. I.
,
Lifshitz
,
I. M.
, and
Tanatarov
,
M. V.
, 1957, “
Relaxation Between Electrons and the Crystalline Lattice
,”
Sov. Phys. JETP
,
4
, pp.
173
178
. 0038-5646
37.
Xu
,
M. T.
, and
Wang
,
L. Q.
, 2002, “
Thermal Oscillation and Resonance in Dual-Phase-Lagging Heat Conduction
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
1055
1061
.
38.
Wang
,
L. Q.
,
Xu
,
M. T.
, and
Zhou
,
X.
, 2001, “
Well-Posedness and Solution Structure of Dual-Phase-Lagging Heat Conduction
,”
Int. J. Heat Mass Transfer
,
44
, pp.
1659
1669
. 0017-9310
39.
Wang
,
L. Q.
, and
Xu
,
M. T.
, 2002, “
Well-Possedness of Dual-Phase-Lagging Heat Conduction Equation: Higher Dimensions
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
1165
1171
.
40.
Antaki
,
P.
, 1998, “
Solution for Non-Fourier Dual Phase Lag Heat Conduction in a Semi-Infinite Slab With Surface Heat Flux
,”
Int. J. Heat Mass Transfer
0017-9310,
41
, pp.
2253
2258
.
41.
Dai
,
W.
, and
Nassar
,
R.
, 1999, “
A Finite Difference Scheme for Solving the Heat Transport Equation at The Microscale
,”
Numer. Methods Partial Differ. Equ.
0749-159X,
15
, pp.
697
708
.
42.
Dai
,
W.
, and
Nassar
,
R.
, 2002, “
An Approximate Analytic Method for Solving 1D Dual-Phase-Lagging Heat Transport Equations
,”
Int. J. Heat Mass Transfer
,
45
, pp.
1585
1593
. 0017-9310
43.
Dai
,
W.
,
Shen
,
L.
,
Nassar
,
R.
, and
Zhu
,
T.
, 2004, “
A Stable and Convergent Three-Level Finite Difference Scheme for Solving a Dual-Phase-Lagging Heat Transport Equation in Spherical Coordinates
,”
Int. J. Heat Mass Transfer
,
47
, pp.
1817
1825
. 0017-9310
44.
Lin
,
C. K.
,
Husang
,
C. C.
, and
Chang
,
Y. P.
, 1997, “
The Unsteady Solution of a Unified Heat Conduction Solution of a Unified Heat Conduction Equation
,”
Int. J. Heat Mass Transfer
,
40
, pp.
1716
1719
. 0017-9310
45.
Kulish
,
V. V.
, and
Novozhilov
,
V. B.
, 2004, “
An Integral Equation for the Dual-Lag Model of Heat Transfer
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
805
808
.
46.
Xu
,
Y. S.
, and
Guo
,
Z. Y.
, 1995, “
Heat Wave Phenomena in IC Chips
,”
Int. J. Heat Mass Transfer
0017-9310,
38
, pp.
2919
2922
.
47.
Vadasz
,
P.
, 2005, “
Absence of Oscillations and Resonance in Porous Media Dual-Phase-Lagging Fourier Heat Conduction
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
307
314
.
48.
Vadasz
,
P.
, 2005, “
Lack of Oscillations in Dual-Phase-Lagging Heat Conduction for a Porous Slab Subject to Imposed Heat Flux and Temperature
,”
Int. J. Heat Mass Transfer
,
48
, pp.
2822
2828
. 0017-9310
49.
Vadasz
,
P.
, 2005, “
Explicit Conditions for Local Thermal Equilibrium in Porous Media Heat Conduction
,”
Transp. Porous Media
0169-3913,
59
, pp.
341
355
.
50.
Vadasz
,
P.
, 2006, “
Exclusion of Oscillations in Heterogeneous and Bi-Composite Media Thermal Conduction
,”
Int. J. Heat Mass Transfer
,
49
, pp.
4886
4892
. 0017-9310
51.
Quintanilla
,
R.
, and
Racke
,
R.
, 2006, “
A Note on Stability in Dual-Phase-Lag Heat Conduction
,”
Int. J. Heat Mass Transfer
,
49
, pp.
1209
1213
. 0017-9310
52.
Joshi
,
A. A.
, and
Majumdar
,
A.
, 1993, “
Transient Ballistic and Diffusive Phonon Heat Transport in Thin Films
,”
J. Appl. Phys.
0021-8979,
74
, pp.
31
39
.
53.
Chen
,
G.
, 2001, “
Ballistic-Diffusive Heat-Conduction Equations
,”
Phys. Rev. Lett.
0031-9007,
86
, pp.
2297
2300
.
54.
Chen
,
G.
, 2002, “
Ballistic-Diffusive Equations for Transient Heat Conduction From Nano To Macroscales
,”
ASME J. Heat Transfer
0022-1481,
124
, pp.
320
328
.
55.
Randrianalisoa
,
J.
, and
Baillis
,
D.
, 2008, “
Monte Carlo Simulation of Steady-State Microscale Phonon Heat Transport
,”
ASME J. Heat Transfer
0022-1481,
130
, p.
072404
.
56.
Jeng
,
M. S.
,
Yang
,
R.
,
Song
,
D.
et al.
, 2008, “
Modeling the Thermal Conductivity and Phonon Transport in Nanoparticle Composites Using Monte Carlo simulation
,”
ASME J. Heat Transfer
0022-1481,
130
, p.
042410
.
57.
Narumanchi
,
S. V. J.
,
Murthy
,
J. Y.
, and
Amon
,
C. H.
, 2005, “
Comparison of Different Phonon Transport Models for Predicting Heat Conduction in Silicon-On-Insulator Transistors
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
713
723
.
58.
Narumanchi
,
S. V. J.
,
Murthy
,
J. Y.
, and
Amon
,
C. H.
, 2004, “
Submicron Heat Transport Model in Silicon Accounting for Phonon Dispersion and Polarization
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
946
955
.
59.
Murthy
,
J. Y.
, and
Mathur
,
S. R.
, 2003, “
An Improved Computational Procedure for Sub-Micron Heat Conduction
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
904
910
.
60.
Narumanchi
,
S. V. J.
,
Murthy
,
J. Y.
, and
Amon
,
C. H.
, 2003, “
Simulation of Unsteady Small Heat Source Effects in Sub-Micron Heat Conduction
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
896
903
.
61.
Murthy
,
J. Y.
, 2002, “
Computation of Sub-Micron Thermal Transport Using an Unstructured Finite Volume Method
,”
ASME J. Heat Transfer
0022-1481,
124
, pp.
1176
1181
.
62.
Mazumder
,
S.
, and
Majumdar
,
A.
, 2001, “
Monte Carlo Study of Phonon Transport in Solid Thin Films Including Dispersion and Polarization
,”
ASME J. Heat Transfer
0022-1481,
123
, pp.
749
759
.
63.
Zeng
,
T.
, and
Chen
,
G.
, 2001, “
Phonon Heat Conduction in Thin Films: Impacts of Thermal Boundary Resistance and Internal Heat Generation
,”
ASME J. Heat Transfer
0022-1481,
123
, pp.
340
347
.
64.
Sverdrup
,
P. G.
,
Ju
,
Y. S.
, and
Goodson
,
K. E.
, 2001, “
Sub-Continuum Simulations of Heat Conduction in Silicon-on-Insulator Transistors
,”
ASME J. Heat Transfer
0022-1481,
123
, pp.
130
137
.
You do not currently have access to this content.