A multiobjective performance optimization of microchannel heat sink is carried out numerically applying surrogate analysis and evolutionary algorithm. Design variables related to microchannel width, depth, and fin width are selected, and two objective functions, thermal resistance and pumping power, are employed. With the help of finite volume solver, Navier–Stokes analyses are performed at the design sites obtained from full factorial design of sampling methods. Using the numerically evaluated objective function values, polynomial response surface is constructed for each objective functions, and multiobjective optimization is performed to obtain global Pareto optimal solutions. Analysis of optimum solutions is simplified by carrying out trade-off with design variables and objective functions. Objective functions exhibit changing sensitivity to design variables along the Pareto optimal front.

1.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
, 1981, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
0741-3106,
EDL-2
, pp.
126
129
.
2.
Kawano
,
K.
,
Sekimura
,
M.
,
Minakami
,
K.
,
Iwasaki
,
H.
, and
Ishizuka
,
M.
, 2001, “
Development of Micro Channel Heat Exchanging
,”
JSME Int. J., Ser. B
1340-8054,
44
(
4
), pp.
592
598
.
3.
Knight
,
R. W.
,
Hall
,
D. J.
,
Goodling
,
J. S.
, and
Jaeger
,
R. C.
, 1992, “
Heat Sink Optimization With Application to Microchannels
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
0148-6411,
15
(
5
), pp.
832
842
.
4.
Wei
,
X.
, and
Joshi
,
Y.
, 2003, “
Optimization Study of Stacked Micro-Channel Heat Sinks for Micro-Electronic Cooling
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
26
(
1
), pp.
55
61
.
5.
Fisher
,
T. S.
, and
Torrance
,
K. E.
, 2001, “
Optimal Shapes of Fully Embedded Channels for Conjugate Cooling
,”
IEEE Trans. Adv. Packag.
1521-3323,
24
(
4
), pp.
555
562
.
6.
Kim
,
S. J.
, 2004, “
Methods for Thermal Optimization of Microchannel Heat Sinks
,”
Heat Transfer Eng.
0145-7632,
25
(
1
), pp.
37
49
.
7.
Liu
,
D.
, and
Garimella
,
S. V.
, 2005, “
Analysis and Optimization of the Thermal Performance of Microchannel Heat Sinks
,”
Int. J. Numer. Methods Heat Fluid Flow
0961-5539,
15
(
1
), pp.
7
26
.
8.
Li
,
J.
, and
Peterson
,
G. P.
, 2006, “
Geometric Optimization of a Micro Heat Sink With Liquid Flow
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
29
(
1
), pp.
145
154
.
9.
Husain
,
A.
, and
Kim
,
K. Y.
, 2007, “
Design Optimization of Micro-channel for Micro Electronic Cooling
,”
The Fifth International Conference on Nanochannels, Microchannels and Minichannels
,
Puebla, Mexico
, June 18–20, Paper No. ICNMM2007-30053.
10.
Foli
,
K.
,
Okabe
,
T.
,
Olhofer
,
M.
,
Jin
,
Y.
, and
Sendhoff
,
B.
, 2006, “
Optimization of Micro Heat Exchanger: CFD, Analytical Approach and Multi-Objective Evolutionary Algorithms
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
1090
1099
.
11.
Deb
,
K.
, and
Goel
,
T.
, 2001, “
A Hybrid Multi-Objective Evolutionary Approach to Engineering Shape Design
,”
Proceedings of Evolutionary Multi-Criterion Optimization Conference
,
Zurich
, March 7–9, pp.
385
399
.
12.
CFX-10.0 Solver Theory, 2005, ANSYS.
13.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
McGraw-Hill
,
New York
, pp.
124
134
.
14.
Myers
,
R. H.
, and
Montgomery
,
D. C.
, 1995,
Response Surface Methodology: Process and Product Optimization Using Designed Experiments
,
Wiley
,
New York
.
15.
Guinta
,
A. A.
, 1997, “
Aircraft Multidisciplinary Design Optimization Using Design of Experimental Theory and Response Surface Modeling Methods
,” Ph.D. thesis, Virginia Polytechnic Institute and State University, Blacksburg.
You do not currently have access to this content.