Laser-induced incandescence (LII) measurements carried out in aerosols having a large particle volume fraction must be corrected to account for extinction between the energized aerosol particles and the detector, called signal trapping. While standard correction techniques have been developed for signal trapping by absorption, the effect of scattering on LII measurements requires further investigation, particularly the case of highly anisotropic scattering and along a path of relatively large optical thickness. This paper examines this phenomenon in an aerosol containing highly aggregated soot particles by simulating LII signals using a backward Monte Carlo analysis; these signals are then used to recover the soot particle temperature and soot volume fraction. The results show that inscattered radiation is a substantial component of the LII signal under high soot loading conditions, which can strongly influence properties derived from these measurements. Correction techniques based on Bouguer’s law are shown to be effective in mitigating the effect of scatter on the LII signals.

1.
Vander Wal
,
R. L.
, and
Jensen
,
K. A.
, 1998, “
Laser-Induced Incandescence: Excitation Intensity
,”
Appl. Opt.
0003-6935,
37
, pp.
1607
1616
.
2.
Vander Wal
,
R. L.
,
Zhou
,
Z.
, and
Choy
,
M. Y.
, 1996, “
Laser-Induced Incandescence Calibration via Gravimetric Sampling
,”
Combust. Flame
0010-2180,
105
, pp.
462
470
.
3.
Snelling
,
D. R.
,
Smallwood
,
G. J.
,
Liu
,
F.
,
Gülder
,
Ö. L.
, and
Bachalo
,
W. D.
, 2005, “
A Calibration-Independent Laser-Induced Incandescence Technique for Soot Measurement by Detecting Absolute Light Intensity
,”
Appl. Opt.
0003-6935,
44
, pp.
6773
6785
.
4.
De luliis
,
S.
,
Cignoli
,
F.
, and
Zizak
,
G.
, 2005, “
Two-Color Laser-Induced Incandescence (2C-LII) Technique for Absolute Soot Volume Fraction Measurements in Flames
,”
Appl. Opt.
0003-6935,
44
, pp.
7414
7423
.
5.
Roth
,
P.
, and
Filippov
,
A. V.
, 1996, “
In Situ Ultrafine Particle Sizing by a Combination of Pulsed Laser Heatup and Particle Thermal Emission
,”
J. Aerosol Sci.
0021-8502,
27
, pp.
95
104
.
6.
Lehre
,
T.
,
Jungfleisch
,
B.
,
Suntz
,
R.
, and
Bockhorn
,
H.
, 2003, “
Size Distributions of Nanoscaled Particles and Gas Temperatures From Time-Resolved Laser-Induced-Incandescence Measurements
,”
Appl. Opt.
0003-6935,
42
, pp.
2021
2030
.
7.
Choy
,
M. Y.
, and
Jensen
,
K. A.
, 1998, “
Calibration and Correction of Laser-Induced Incandescence for Soot Volume Fraction Measurements
,”
Combust. Flame
0010-2180,
112
, pp.
485
491
.
8.
Köylü
,
Ü. Ö.
, and
Faeth
,
G. M.
, 1994, “
Optical Properties of Overfire Soot in Buoyant Turbulent Diffusion Flames at Long Residence Times
,”
ASME J. Heat Transfer
0022-1481,
116
, pp.
152
159
.
9.
Liu
,
F.
,
Thomson
,
K. A.
, and
Smallwood
,
G. J.
, 2007, “
Effects of Soot Absorption and Scattering on LII Intensities in Laminar Coflow Diffusion Flames
,”
Proceedings of the 5th International Symposium on Radiative Transfer
,
Bodrum, Turkey
, June 17–22.
10.
Chen
,
L. H.
,
Garo
,
A.
,
Cen
,
K.
, and
Grehan
,
G.
, 2007, “
Numerical Simulation of Soot Optical Diagnostics in Non-Optically Thin Media
,”
Appl. Phys. B: Lasers Opt.
0946-2171,
87
, pp.
739
747
.
11.
Migliorini
,
F.
,
De luliis
,
S.
,
Cignoli
,
F.
, and
Zizak
,
G.
, 2006, “
Absorption Correction of Two-Color Laser-Induced Incandescence Signals for Soot Volume Fraction Measurements
,”
Appl. Opt.
0003-6935,
45
, pp.
7706
7711
.
12.
Shaddix
,
C. R.
, and
Smyth
,
K. C.
, 1996, “
Laser-Induced Incandescence Measurements of Soot Production in Steady and Flickering Methane, Propane, and Ethylene Diffusion Flames
,”
Combust. Flame
0010-2180,
107
, pp.
418
452
.
13.
McCrain
,
L. L.
, and
Roberts
,
W. L.
, 2005, “
Measurement of the Soot Volume Field in Laminar Diffusion Flames at Elevated Pressures
,”
Combust. Flame
0010-2180,
140
, pp.
60
69
.
14.
Modest
,
M. F.
, 2003,
Radiative Heat Transfer
, 2nd ed.,
Academic Press
,
San Diego, CA
.
15.
Dobbins
,
R. A.
, and
Megaridis
,
C. M.
, 1991, “
Absorption and Scattering of Light by Polydisperse Aggregates
,”
Appl. Opt.
0003-6935,
30
, pp.
4747
4754
.
16.
Eymet
,
V.
,
Brasil
,
A. M.
,
El Hafi
,
M.
,
Farias
,
T. L.
, and
Coelho
,
P. J.
, 2002, “
Numerical Investigation of the Effect of Soot Aggregation on the Radiative Properties in the Infrared Region and Radiative Heat Transfer
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
74
, pp.
697
718
.
17.
Murphy
,
J. J.
, and
Shaddix
,
C. R.
, 2005, “
Influence of Scattering and Probe-Volume Heterogeneity on Soot Measurements Using Optical Pyrometry
,”
Combust. Flame
0010-2180,
143
, pp.
1
10
.
18.
Thomson
,
K. A.
,
Snelling
,
D. R.
,
Smallwood
,
G. J.
, and
Liu
,
F.
, 2006, “
Laser Induced Incandescence Measurements of Soot Volume Fraction and Effective Particles Size in a Laminar Co-Annular Non-Premixed Methane/Air Flame at Pressures Between 0.5–4.0MPa
,”
Appl. Phys. B: Lasers Opt.
0946-2171,
83
, pp.
469
475
.
19.
Modest
,
M. F.
, 2003, “
Backward Monte Carlo Simulations in Radiative Heat Transfer
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
57
62
.
20.
Siegel
,
R.
, and
Howell
,
J. R.
, 2002,
Thermal Radiation Heat Transfer
, 4th ed.,
CRC Press
, Boca Raton, FL, p.
423
.
21.
Yang
,
B.
, and
Köylü
,
Ü. Ö.
, 2005, “
Soot Processes in a Strongly Radiating Turbulent Flame From Laser Scattering/Extinction Experiments
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
93
, pp.
289
295
.
22.
Chang
,
H.
, and
Charalampopoulos
,
T. T.
, 1990, “
Determination of the Wavelength Dependence of Refractive Indices of Flame Soot
,”
Proc. R. Soc. London, Ser. A
1364-5021,
430
, pp.
570
591
.
23.
Case
,
K. M.
, 1957, “
Transfer Problems and the Reciprocity Principle
,”
Rev. Mod. Phys.
0034-6861,
29
, pp.
651
663
.
24.
Farmer
,
J. T.
, and
Howell
,
J. R.
, 1998, “
Comparison of Monte Carlo Strategies for Radiative Transfer in Participating Media
,”
Adv. Heat Transfer
0065-2717,
31
, pp.
333
429
.
25.
Toublanc
,
D.
, 1996, “
Henyey-Greenstein and Mie Phase Functions in Monte Carlo Radiative Transfer Computations
,”
Appl. Opt.
0003-6935,
35
, pp.
3270
3274
.
26.
Smith
,
W. J.
, 1990,
Modern Optical Engineering: The Design of Optical Systems
, 2nd ed.,
McGraw-Hill
,
New York
, pp.
211
212
.
27.
Liu
,
F.
,
Garbett
,
E. S.
, and
Swithenbank
,
J.
, 1992, “
Effects of Anisotropic Scattering on Radiative Heat Transfer Using the P1-Approximation
,”
Int. J. Heat Mass Transfer
0017-9310,
35
, pp.
2491
2499
.
28.
Snelling
,
D. R.
,
Smallwood
,
G. J.
,
Liu
,
F.
,
Gulder
,
O. L.
, and
Bachalo
,
W. D.
, 2005, “
A Calibration-Independent Laser-Induced Incandescence Technique for Soot Measurement by Detecting Absolute Light Intensity
,”
Appl. Opt.
0003-6935,
44
, pp.
6773
6785
.
29.
Levendis
,
Y. A.
,
Estrada
,
K. R.
, and
Hottel
,
H. C.
, 1992, “
Development of Multicolor Pyrometers to Monitor the Transient Response of Burning Carbonaceous Particles
,”
Rev. Sci. Instrum.
0034-6748,
63
, pp.
3608
3622
.
You do not currently have access to this content.