A total concentration fixed-grid method is presented in this paper to model the two-dimensional wet chemical etching. Two limiting cases are discussed, namely—the diffusion-controlled etching and the reaction-controlled etching. A total concentration, which is the sum of the unreacted and the reacted etchant concentrations, is defined. Using this newly defined total concentration, the governing equation also contains the interface condition. A new update procedure for the reacted concentration is formulated. For demonstration, the finite-volume method is used to solve the governing equation with prescribed initial and boundary conditions. The effects of reaction rate at the etchant–substrate interface are examined. The results obtained using the total concentration method, are compared with available results from the literature.

1.
Hoffman
,
K. H.
, and
Sprekels
,
J.
, 1990, “
Free Boundary Problems: Theory and Applications
,”
Longman Scientific and Technical
,
Harlow, Essex, England
, Vol.
1
, pp.
89
.
2.
Madou
,
M. J.
, 2002,
Fundamentals of Microfabrication
2nd Ed.,
CRC
,
New York
.
3.
Pister
,
K. S. J.
,
Judy
,
M. W.
,
Burgett
,
S. R.
, and
Fearing
,
R. S.
, 1992, “
Microfabricated Hinges
,”
Sens. Actuators, A
0924-4247,
33
, pp.
249
256
.
4.
Mastrangelo
,
C. H.
,
Zhang
,
X.
, and
Tang
,
W. C.
, 1995, “
Surface Micromachined Capacitive Differential Pressure Sensor with Lithographically-Defined Silicon Diaphragm
,”
Proceedings 8th International Conference on Solid-State Sensors and Actuators
,
Eurosensor IX
,
Stockholm
, June 25–29, pp.
612
615
.
5.
Kuiken
,
H. K.
, 1984, “
Etching: A Two-Dimensional Mathematical Approach
,”
Proc. R. Soc. London, Ser. A
1364-5021,
392
, pp.
199
225
.
6.
Kuiken
,
H. K.
, 1984, “
Etching Through a Slit
,”
Proc. R. Soc. London, Ser. A
1364-5021,
396
, pp.
95
117
.
7.
Vuik
,
C.
, and
Cuvelier
,
C.
, 1985, “
Numerical Solution of an Etching Problem
,”
J. Comput. Phys.
0021-9991,
59
, pp.
247
263
.
8.
Bruch
,
J. C.
Jr.
,
Papadopoulos
,
C. A.
, and
Sloss
,
J. M.
, 1993, “
Parallel Computing Used in Solving Wet Chemical Etching Semiconductor Fabrication Problems
,”
GAKUTO International Series, Mathematical Sciences and Applications
,
1
, pp.
281
292
.
9.
Kuiken
,
H. K.
,
Kelly
,
J. J.
, and
Notten
,
P. H. L.
, 1986, “
Etching Profiles at Resist Edges—I. Mathematical Models for Diffusion-Controlled Cases
,”
J. Electrochem. Soc.
0013-4651,
133
, pp.
1217
1226
.
10.
Shin
,
C. B.
, and
Economou
,
D. J.
, 1989, “
Effect of Transport and Reaction on the Shape Evolution of Cavities During Wet Chemical Etching
,”
J. Electrochem. Soc.
0013-4651,
136
, pp.
1997
2004
.
11.
Shin
,
C. B.
, and
Economou
,
D. J.
, 1991, “
Forced and Natural Convection Effects on the Shape Evolution of Cavities During Wet Chemical Etching
,”
J. Electrochem. Soc.
0013-4651,
138
, pp.
527
538
.
12.
Driesen
,
C. H.
, 1999, “
Simulation of Convection-Driven Wet-Chemical Etching
,” Ph.D. Thesis, University of Twente, Twente, The Netherlands.
13.
Li
,
W. J.
,
Shih
,
J. C.
,
Mai
,
J. D.
,
Ho
,
C-M.
,
Liu
,
J.
, and
Tai
,
Y-C.
, 1998, “
Numerical Simulation for the Sacrificial Release of MEMS Square Diaphragms
,”
Proceedings 1st International Conference on MSMSSA
,
San Jose, CA
, April.
14.
Kaneko
,
K.
,
Noda
,
T.
,
Sakata
,
M.
, and
Uchiyama
,
T.
, 2003, “
Observation and Numerical Simulation for Wet Chemical Etching Process of Semiconductor
,”
Proceedings of 4th ASME-JSME Joint Fluids Engineering Conference
,
Honolulu, HA
, July 6–10.
15.
Sudirham
,
J. J.
,
Van Damme
,
R. M. J.
, and
Van Der Vegt
,
J. J. W.
, 2004, “
Space-Time Discontinuous Galerkin Method for Wet Chemical Etching of Microstructures
,” Annual Report, Memorandum No. 1720,
University of Twente
, Twente, The Netherlands.
16.
Adalsteinsson
,
D.
, and
Sethian
,
J. A.
, 1995, “
A Level Set Approach to a Unified Model for Etching, Deposition and Lithography I: Alogorithms and Two-Dimensional Simulations
,”
J. Comput. Phys.
0021-9991,
120
, pp.
128
144
.
17.
Adalsteinsson
,
D.
, and
Sethian
,
J. A.
, 1995, “
A Level Set Approach to a Unified Model for Etching, Deposition, and Lithography II: Three-Dimensional Simulations
,”
J. Comput. Phys.
0021-9991,
122
, pp.
348
366
.
18.
La Magna
,
A.
,
D’Arrigo
,
G.
,
Garozzo
,
G.
, and
Spinella
,
C.
, 2003, “
Computational Analysis of Etched Profile Evolution for the Derivation of 2D Dopant Density Maps in Silicon
,”
Mater. Sci. Eng., B
0921-5107,
102
(
1–3
), pp.
43
48
.
19.
Lam
,
Y. C.
,
Chai
,
J. C.
,
Rath
,
P.
,
Zheng
,
H.
, and
Murukeshan
,
V. M.
, 2004, “
A Fixed Grid Method for Chemical Etching
,”
Int. Commun. Heat Mass Transfer
0735-1933,
31
(
8
), pp.
1123
1131
.
20.
Rath
,
P.
,
Chai
,
J. C.
,
Zheng
,
H.
,
Lam
,
Y. C.
,
Murukeshan
,
V. M.
, and
Zhu
,
H.
, 2005, “
A Fixed-Grid Approach for Diffusion- and Reaction-Controlled Wet Chemical Etching
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
11
), pp.
2140
2149
.
21.
Notten
,
P. H. L.
,
Kelly
,
J. J.
, and
Kuiken
,
H. K.
, 1986, “
Etching Profiles at Resist Edges—II. Experimental Confirmation of Models Using GaAs
,”
J. Electrochem. Soc.
0013-4651,
133
, pp.
1226
1232
.
22.
Rath
,
P.
,
Chai
,
J. C.
,
Zheng
,
H. Y.
,
Lam
,
Y. C.
, and
Murukeshan
,
V. M.
, 2005, “
A Total-Concentration Fixed-Grid Method for Two-Dimensional Diffusion-Controlled Wet Chemical Etching
,”
Proceedings ASME Summer Heat Transfer Conference
, San Francisco, CA, July 17–22, Paper No. HT2005–72186.
23.
Shamsundar
,
N.
, and
Sparrow
,
E. M.
, 1975, “
Analysis of Multidimensional Conduction Phase Change via the Enthalpy Method
,”
J. Heat Transfer
0022-1481,
97
, pp.
333
340
.
24.
Brent
,
A. D.
,
Voller
,
V. R.
, and
Reid
,
K. J.
, 1988, “
Enthalpy-Porosity Technique for Modeling Convection-Diffusion Phase Change: Application to the Melting of a Pure Metal
,”
Numer. Heat Transfer
0149-5720,
13
, pp.
297
318
.
25.
Kaenton
,
J.
,
Semma
,
E.
,
Timchenko
,
V.
,
Ganaoui
,
M. El.
,
Leonardi
,
E.
, and
de Vahl Davis
,
G.
, 2004, “
Effects of Anisotropy and Solid/Liquid Thermal Conductivity Ratio on Flow Instabilities During Inverted Bridgman Growth
,”
Int. J. Heat Mass Transfer
0017-9310,
47
(
14–16
), pp.
3403
3413
.
26.
Kaenton
,
J.
,
de Vahl Davis
,
G.
,
Leonardi
,
E.
, and
Leong
,
S. S.
, 2002, “
A Numerical Study of Anisotropy and Convection During Solidification
,”
Numer. Heat Transfer, Part B
1040-7790,
41
(
3–4
), pp.
309
323
.
27.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
, 1st ed.,
Hemisphere
,
New York
.
You do not currently have access to this content.