Several new reduced-scale structures have been proposed to improve thermoelectric properties of materials. In particular, superlattice thin films and wires should decrease the thermal conductivity, due to increased phonon boundary scattering, while increasing the local electron density of states for improved thermopower. The net effect should be increased ZT, the performance metric for thermoelectric structures. Modeling these structures is challenging because quantum effects often have to be combined with noncontinuum effects and because electronic and thermal systems are tightly coupled. The nonequilibrium Green’s function (NEGF) approach, which provides a platform to address both of these difficulties, is used to predict the thermoelectric properties of thin-film structures based on a limited number of fundamental parameters. The model includes quantum effects and electron-phonon scattering. Results indicate a 26–90 % decrease in channel current for the case of near-elastic, phase-breaking, electron-phonon scattering for single phonon energies ranging from 0.2 meV to 60 meV. In addition, the NEGF model is used to assess the effect of temperature on device characteristics of thin-film heterojunctions whose applications include thermoelectric cooling of electronic and optoelectronic systems. Results show the predicted Seebeck coefficient to be similar to measured trends. Although superlattices have been known to show reduced thermal conductivity, results show that the inclusion of scattering effects reduces the electrical conductivity leading to a significant reduction in the power factor (S2σ).

1.
Hicks
,
L. D.
, and
Dresselhaus
,
M. S.
, 1993, “
Effect of Quantum-Well Structures on the Thermoelectric Figure of Merit
,”
Phys. Rev. B
0163-1829,
47
(
19
), pp.
12727
12731
.
2.
Hicks
,
L. D.
,
Harman
,
T. C.
, and
Dresselhaus
,
M. S.
, 1993, “
Use of Quantum-Well Superlattices to Obtain a High Figure of Merit From Nonconventional Thermoelectric Materials
,”
Appl. Phys. Lett.
0003-6951,
63
(
23
), pp.
3230
3232
.
3.
Tritt
,
T. M.
, 2001,
Recent Trends in Thermoelectric Materials Research III: Semiconductors and Semimetals
,
Academic Press
, New York, Vol.
3
.
4.
Simkin
,
M. V.
, and
Mahan
,
G. D.
, 2000, “
Minimum Thermal Conductivity of Superlattices
,”
Phys. Rev. Lett.
0031-9007,
84
(
5
), pp.
927
930
.
5.
Koga
,
T.
,
Cronin
,
S. B.
,
Dresselhaus
,
M. S.
,
Liu
,
J. L.
, and
Wang
,
K. L.
, 2000, “
Experimental Proof-of-Principle Investigation of Enhanced Z3DT in 001 Oriented Si∕Ge Superlattices
,”
Appl. Phys. Lett.
0003-6951,
77
(
10
), pp.
1490
1492
.
6.
Yang
,
B.
,
Liu
,
J.
,
Wang
,
K.
, and
Chen
,
G.
, 2001, “
Characterization of Cross-Plane Thermo-Electric Properties of Si∕Ge Superlattices
,”
Proc. of 20th International Conference on Thermoelectrics (ICT)
, Beijing, China, June, pp.
344
347
.
7.
Yang
,
B.
,
Liu
,
J. L.
,
Wang
,
K. L.
, and
Chen
,
G.
, 2002, “
Simultaneous Measurements of Seebeck Coefficient and Thermal Conductivity Across Superlattice
,”
Appl. Phys. Lett.
0003-6951,
80
(
10
), pp.
1758
1760
.
8.
Harman
,
T. C.
,
Taylor
,
P. J.
,
Walsh
,
M. P.
, and
La Forge
,
B. E.
, 2002, “
Quantum Dot Superlattice Thermoelectric Materials and Devices
,”
Science
0036-8075,
297
(
27
), pp.
2229
2232
.
9.
Venkatasubramanian
,
R.
,
Siivola
,
E.
,
Colpitts
,
T.
, and
O’Quinn
,
B.
, 2001, “
Thin-Film Thermoelectric Devices With High Room-Temperature Figures of Merit
,”
Nature (London)
0028-0836,
413
(
11
), pp.
597
602
.
10.
Chen
,
G.
, 1998, “
Thermal Conductivity and Ballistic-Phonon Transport in the Cross-Plane Direction of Superlattices
,”
Phys. Rev. B
0163-1829,
57
(
23
), pp.
14958
14973
.
11.
Chen
,
G.
, 1999, “
Phonon Wave Heat Conduction in Thin Films and Superlattices
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
945
953
.
12.
Dresselhaus
,
M. S.
, 2003, “
Nanostructures and Energy Conversion Devices
,”
Proc. of 2003 Rohsenow Symposium on Future Trends of Heat Transfer
, Cambridge, MA, May, pp.
1
3
.
13.
Rahman
,
A.
,
Ghosh
,
A.
, and
Lundstrom
,
M.
, “
Assessment of Ge n-MOSFETs by Quantum Simulation
,” IEEE International Electron Devices Meeting (IEDM) Technical Digest, pp.
19.4.1
19.4.4
, December 2003.
14.
Mazumder
,
P.
,
Kulkarni
,
S.
,
Bhattacharya
,
M.
,
Sun
,
J. P.
, and
Haddad
,
G. I.
, 1998, “
Digital Circuit Applications of Resonant Tunneling Devices
,”
Proc. IEEE
0018-9219,
86
(
4
), pp.
664
686
.
15.
Cahill
,
D. G.
,
Ford
,
W. K.
,
Goodson
,
K. E.
,
Mahan
,
G. D.
,
Majumdar
,
A.
,
Maris
,
H. J.
,
Merlin
,
R.
, and
Phillpot
,
S. R.
, 2003, “
Nanoscale Thermal Transport
,”
J. Appl. Phys.
0021-8979,
93
(
2
), pp.
793
818
.
16.
Asheghi
,
M.
,
Leung
,
Y. K.
,
Wong
,
S. S.
, and
Goodson
,
K. E.
, 1997, “
Phonon-Boundary Scattering in Thin Silicon Layers
,”
Appl. Phys. Lett.
0003-6951,
71
(
13
), pp.
1798
1800
.
17.
Zhou
,
J. H.
,
Jin
,
C. G.
,
Li
,
X. G.
, and
Shi
,
L.
, 2005, “
Thermoelectric Properties of Individual Electrodeposited Bismuth Telluride Nanowires
,”
Appl. Phys. Lett.
0003-6951,
87
(
13
), p.
133109
.
18.
Blotekjaer
,
K.
, 1970, “
Transport Equations for Electrons in Two-Valley Semiconductors
,”
IEEE Trans. Electron Devices
0018-9383,
17
(
1
), pp.
38
47
.
19.
Lugli
,
P.
, 1990, “
The Monte Carlo Method for Semiconductor Device and Process Modeling
,”
IEEE Trans. Comput.-Aided Des.
0278-0070,
9
(
11
), pp.
1164
1176
.
20.
Mazumder
,
S.
, and
Majumdar
,
A.
, 2001, “
Monte Carlo Study of Phonon Transport in Solid Thin Films Including Dispersion and Polarization
,”
ASME J. Heat Transfer
0022-1481,
123
(
4
), pp.
749
759
.
21.
Lai
,
J.
, and
Majumdar
,
A.
, 1996, “
Concurrent Thermal and Electrical Modeling of Sub-Micrometer Silicon Devices
,”
J. Appl. Phys.
0021-8979,
79
(
9
), pp.
7353
7361
.
22.
Raman
,
A.
,
Walker
,
D. G.
, and
Fisher
,
T. S.
, 2003, “
Simulation of Nonequilibrium Thermal Effects in Power LDMOS Transistors
,”
Solid-State Electron.
0038-1101,
47
(
8
), pp.
1265
1273
.
23.
Murthy
,
J. Y.
, and
Mathur
,
S. R.
, 2002, “
Computation of Sub-Micron Thermal Transport Using an Unstructured Finite Volume Method
,”
ASME J. Heat Transfer
0022-1481,
124
(
6
), pp.
1176
1181
.
24.
Asenov
,
A.
,
Watling
,
J. R.
,
Brown
,
A. R.
, and
Ferry
,
D. K.
, 2002, “
The Use of Quantum Potentials for Confinement and Tunnelling in Semiconductor Devices
,”
J. Comput. Electron.
1569-8025,
1
(
4
), pp.
503
513
.
25.
Tang
,
T.
, and
Wu
,
B.
, 2004, “
Quantum Correction for the Monte Carlo Simulation Via the Effective Conduction-Band Edge Equation
,”
Semicond. Sci. Technol.
0268-1242,
19
(
1
), pp.
54
60
.
26.
Lent
,
C. S.
, and
Kirkner
,
D. J.
, 1990, “
The Quantum Transmitting Boundary Method
,”
J. Appl. Phys.
0021-8979,
67
(
10
), pp.
6353
6359
.
27.
Laux
,
S. E.
,
Kumar
,
A.
, and
Fischetti
,
M. V.
, 2002, “
Ballistic Fet Modeling Using QDAME: Quantum Device Analysis by Modal Evaluation
,”
IEEE Trans. Nanotechnol.
1536-125X,
1
(
4
), pp.
255
259
.
28.
Datta
,
S.
, 1989, “
Steady-State Quantum Kinetic Equation
,”
Phys. Rev. B
0163-1829,
40
(
8
), pp.
5830
5833
.
29.
Datta
,
S.
, 1990, “
A Simple Kinetic Equation for Steady-State Quantum Transport
,”
J. Phys.: Condens. Matter
0953-8984,
2
(
40
), pp.
8023
8052
.
30.
Datta
,
S.
, 2000, “
Nanoscale Device Modeling: The Green’s Function Method
,”
Superlattices Microstruct.
0749-6036,
28
(
4
), pp.
253
278
.
31.
Datta
,
S.
, 2005,
Quantum Transport: Atom to Transistor
,
Cambridge University Press
, Cambridge, MA.
32.
Bulusu
,
A.
, and
Walker
,
D. G.
, 2005, “
Modeling of Electron Transport in Thin Films With Quantum and Scattering Effects
,” ASME/Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS and Electronic Systems, San Francisco, July, ASME Paper No. IPACK2005–73212.
33.
Szafer
,
A.
, and
Stone
,
A. D.
, 1989, “
Theory of Quantum Conduction Through a Constriction
,”
Phys. Rev. Lett.
0031-9007,
62
(
3
), pp.
300
303
.
34.
Lundstrom
,
M.
, and
Ren
,
Z.
, 2002, “
Essential Physics of Carrier Transport in Nanoscale MOSFETs
,”
IEEE Trans. Electron Devices
0018-9383,
49
(
1
), pp.
133
141
.
35.
Tien
,
C.-L.
,
Majumdar
,
A.
, and
Gerner
,
F. M.
, eds. 1998,
Microscale Energy Transport
,
Taylor & Francis
, New York, pp.
3
94
.
36.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer
,
Taylor and Francis
, New York.
37.
Muller
,
R.
, and
Kamins
,
T.
, 1986,
Device Electronics for Integrated Circuits
,
Wiley
, New York.
38.
Yang
,
B.
,
Liu
,
W. L.
,
Liu
,
J. L.
,
Wang
,
K. L.
, and
Chen
,
G.
, 2002, “
Measurements of Anisotropic Thermoelectric Properties in Superlattices
,”
Appl. Phys. Lett.
0003-6951,
81
(
19
), pp.
3588
3590
.
39.
Geballe
,
T. H.
, and
Hull
,
G. W.
, 1955, “
Seebeck Effect in Silicon
,”
Phys. Rev.
0031-899X,
98
(
4
), pp.
940
948
.
40.
Bulusu
,
A.
, and
Walker
,
D. G.
, 2006, “
Effect of Quantum Confinement on Thermoelectric Properties of 2D and 1D Semiconductor Thin Films
,”
Proc. of ITherm
, San Diego, July.
41.
Dismukes
,
J. P.
,
Ekstrom
,
L.
,
Steigmeier
,
E. F.
,
Kudman
,
I.
, and
Beers
,
D. S.
, 1964, “
Thermal and Electrical Properties of Heavily Doped Ge‐Si Alloys up to 1300k
,”
J. Appl. Phys.
0021-8979,
35
(
10
), pp.
2899
2907
.
42.
Liu
,
W. L.
,
Tasciuc
,
T. B.
,
Liu
,
J. L.
,
Taka
,
K.
,
Wang
,
K. L.
,
Dresselhaus
,
M. S.
, and
Chen
,
G.
, 2001, “
In-Plane Thermoelectric Properties of Si∕Ge Superlattices
,”
Proc. of 20th International Conference on Thermoelectrics (ICT)
, Beijing, China, July, pp.
340
343
.
43.
Liu
,
W. L.
,
Chen
,
G.
,
Liu
,
J. L.
, and
Wang
,
K. L.
, 2002, “
Quantum and Classical Size Effects on Thermoelectric Transport in Si∕Ge Superlattices
,”
Proc. of 21st International Conference on Thermoelectrics (ICT)
, pp.
130
134
.
You do not currently have access to this content.