An atomistic Green’s function method is developed to simulate phonon transport across a strained germanium (or silicon) thin film between two semi-infinite silicon (or germanium) contacts. A plane-wave formulation is employed to handle the translational symmetry in directions parallel to the interfaces. The phonon transmission function and thermal conductance across the thin film are evaluated for various atomic configurations. The contributions from lattice straining and material heterogeneity are evaluated separately, and their relative magnitudes are characterized. The dependence of thermal conductance on film thickness is also calculated, verifying that the thermal conductance reaches an asymptotic value for very thick films. The thermal boundary resistance of a single SiGe interface is computed and agrees well with analytical model predictions. Multiple-interface effects on thermal resistance are investigated, and the results indicate that the first few interfaces have the most significant effect on the overall thermal resistance.

1.
Chen
,
G.
,
Dresselhaus
,
M.
,
Dresselhaus
,
G.
,
Fleurial
,
J.
, and
Caillat
,
T.
, 2003, “
Recent Developments in Thermoelectric Materials
,”
Int. Mater. Rev.
0950-6608,
48
(
1
), pp.
45
66
.
2.
Datta
,
S.
, 2000, “
Nanoscale Device Modeling: The Green’s Function Method
,”
Superlattices Microstruct.
0749-6036,
28
, pp.
253
278
.
3.
Ju
,
Y.
, and
Goodson
,
K.
, 1999, “
Phonon Scattering in Silicon Films With Thickness of Order 100nm
,”
Appl. Phys. Lett.
0003-6951,
74
(
20
), pp.
3005
3007
.
4.
Little
,
W.
, 1959, “
The Transport of Heat Between Dissimilar Solids at Low Temperature
,”
Can. J. Phys.
0008-4204,
37
, pp.
334
349
.
5.
Swartz
,
E.
, and
Pohl
,
R.
, 1989, “
Thermal Boundary Resistance
,”
Rev. Mod. Phys.
0034-6861,
61
, pp.
605
668
.
6.
Stevens
,
R.
,
Smith
,
A.
, and
Norris
,
P.
, 2005, “
Measurement of Thermal Boundary Conductance of a Series of Metal-Dielectric Interfaces by the Transient Thermoreflectance Technique
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
315
322
.
7.
Prasher
,
R.
, and
Phelan
,
P.
, 2001, “
A Scattering-Mediated Acoustic Mismatch Model for the Prediction of Thermal Boundary Resistance
,”
ASME J. Heat Transfer
0022-1481,
123
, pp.
105
112
.
8.
Narumanchi
,
S.
,
Murthy
,
J.
, and
Amon
,
C.
, 2004, “
Submicron Heat Transport model in Silicon Accounting for Phonon Dispersion and Polarization
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
946
955
.
9.
Mazumdar
,
S.
, and
Majumdar
,
A.
, 2001, “
Monte Carlo Study of Phonon Transport in Solid Thin Films including Dispersion and Polarization
,”
ASME J. Heat Transfer
0022-1481,
123
, pp.
749
759
.
10.
Yazdani
,
K.
, and
Asheghi
,
M.
, 2004, “
Ballistic Phonon Transport in Strained Si∕SiGe Nanostructures With an Application to Strained-silicon Transistors
,”
Proceedings of the 9th Intersociety Conference on Thermal and Thermomechanical Phenomena In Electronic Systems
, Las Vegas, NV, June 1–4, No. 04CH37543.
11.
Picu
,
R.
,
Borca-Tasciuc
,
T.
, and
Pavel
,
M.
, 2003, “
Strain and Size Effects on Heat Transport in Nanostructure
,”
J. Appl. Phys.
0021-8979,
93
(
6
), pp.
3535
3539
.
12.
Abramson
,
A.
,
Tien
,
C.
, and
Majumdar
,
A.
, 2002, “
Interface and Strain Effects on the Thermal Conductivity of Heterostructures: A Molecular Dynamics Study
,”
ASME J. Heat Transfer
0022-1481,
124
(
5
), pp.
963
970
.
13.
Schelling
,
P.
,
Phillpot
,
S.
, and
Keblinski
,
P.
, 2002, “
Phonon Wave-Packet Dynamics at Semiconductor Interfaces by Molecular-Dynamics Simulation
,”
Appl. Phys. Lett.
0003-6951,
80
, pp.
2484
2486
.
14.
Young
,
D.
, and
Maris
,
H.
, 1989, “
Lattice-dynamical Calculation of the Kapitza Resistance Between FCC Lattices
,”
Phys. Rev. B
0163-1829,
40
(
6
), pp.
3685
3693
.
15.
Nishiguchi
,
N.
,
Tamura
,
S.
, and
Nori
,
F.
, 1993, “
Phonon-transmission Rate, Fluctuations, and Localization in Random Semiconductor Superlattices: Green’s-Function Approach
,”
Phys. Rev. B
0163-1829,
48
, pp.
2515
2528
.
16.
Cahill
,
D.
,
Ford
,
W.
,
Goodson
,
K.
,
Mahan
,
G.
,
Majumdar
,
A.
,
Maris
,
H.
,
Merlin
,
R.
, and
Phillpot
,
S.
, 2003, “
Nanoscale Thermal Transport
,”
J. Appl. Phys.
0021-8979,
93
(
2
), pp.
793
818
.
17.
Pettersson
,
S.
, and
Mahan
,
G.
, 1990, “
Theory of the Thermal Boundary Resistance Between Dissimilar Lattices
,”
Phys. Rev. B
0163-1829,
42
, pp.
7386
7390
.
18.
Sui
,
Z.
, and
Herman
,
I.
, 1993, “
Effect of Strain on Phonons in Si, Ge, and Si∕Ge Heterostructures
,”
Phys. Rev. B
0163-1829,
48
, pp.
17938
17953
.
19.
Mingo
,
N.
, 2006, “
Anharmonic Phonon Flow Through Molecular Sized Junctions
,”
Phys. Rev. B
0163-1829,
74
, p.
125402
.
20.
Thompson
,
S.
,
Armstrong
,
M.
,
Auth
,
C.
,
Alavi
,
M.
,
Buehler
,
M.
,
Chau
,
R.
,
Cea
,
S.
,
Ghani
,
T.
,
Glass
,
G.
,
Hoffman
,
T.
,
Jan
,
C.
,
Kenyon
,
C.
,
Klaus
,
J.
,
Kuhn
,
K.
,
Ma
,
Z.
,
Mcintyre
,
B.
,
Mistry
,
K.
,
Murthy
,
A.
,
Obradovic
,
B.
,
Nagisetty
,
R.
,
Nguyen
,
P.
,
Sivakumar
,
S.
,
Shaheed
,
R.
,
Shifren
,
L.
,
Tufts
,
B.
,
Tyagi
,
S.
,
Bohr
,
M.
, and
El-Mansy
,
Y.
, 2004, “
A 90‐nm Logic Technology Featuring Strained-Silicon
,”
IEEE Trans. Electron Devices
0018-9383,
51
(
11
), pp.
1790
1797
.
21.
Pop
,
E.
,
Dutton
,
R.
, and
Goodson
,
K.
, 2005, “
Monte Carlo Simulation of Joule Heating in Bulk and Strained Silicon
,”
Appl. Phys. Lett.
0003-6951,
86
, p.
082101
.
22.
Mingo
,
N.
, and
Yang
,
L.
, 2003, “
Phonon Transport in Nanowires Coated With an Amorphous Material: An Atomistic Green’s Function Approach
,”
Phys. Rev. B
0163-1829,
68
, p.
245406
.
23.
Mingo
,
N.
, and
Yang
,
L.
, 2004, “
Erratum: Phonon Transport in Nanowires Coated With an Amorphous Material: An Atomistic Green’s Function Approach [Phys. Rev. B 68, 245406 (2003)]
,”
Phys. Rev. B
0163-1829,
70
, p.
249901
.
24.
Shilkrot
,
L.
,
Srolovitz
,
D.
, and
Tersoff
,
J.
, 2000, “
Morphology Evolution During the Growth of Strained-Layer Superlattices
,”
Phys. Rev. B
0163-1829,
62
(
12
), pp.
8397
8409
.
25.
Ohring
,
M.
, 2001,
Materials Science of Thin Films
,
Academic
,
New York
, pp.
417
492
.
26.
Wortman
,
J.
, and
Evans
,
R.
, 1965, “
Young’s Modulus, Shear Modulus, and Poisson’s Ratio in Silicon and Germanium
,”
J. Appl. Phys.
0021-8979,
36
, pp.
153
156
.
27.
Harrison
,
W. A.
, 1989,
Electronic Structure and the Properties of Solids
,
Dover
,
New York
, pp.
181
208
.
28.
Mingo
,
N.
, 2003, “
Calculation of Si Nanowire Thermal Conductivity Using Complete Phonon Dispersion Relations
,”
Phys. Rev. B
0163-1829,
68
, p.
113308
.
29.
Keating
,
P. N.
, 1966, “
Effect of Invariance Requirements on the Elastic Strain Energy of Crystals With Application to the Diamond Structure
,”
Phys. Rev.
0031-899X,
145
, pp.
637
645
.
30.
Lannoo
,
M.
, and
Friedel
,
P.
, 1991,
Atomic and Electronic Structure of Surfaces
,
Springer
,
New York
, pp.
42
48
.
31.
Guinea
,
F.
,
Tejedor
,
C.
,
Flores
,
F.
, and
Louis
,
E.
, 1983, “
Effective Two-Dimensional Hamiltonian at Surfaces
,”
Phys. Rev. B
0163-1829,
28
(
8
), pp.
4397
4402
.
32.
Zhang
,
W.
, and
Fisher
,
T.
, 2005, “
Simulation of Phonon Interfacial Transport in Strained Silicon-Germanium Heterostructures
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition 2005
, Orlando, FL, November 5–11, No. 80053.
33.
Datta
,
S.
, 2005,
Quantum Transport: Atom to Transistor
, 1st ed.,
Cambridge University Press
,
Cambridge, UK
, pp.
223
233
.
34.
Venugopal
,
R.
,
Ren
,
Z.
,
Datta
,
S.
, and
Lundstrom
,
M.
, 2002, “
Simulating Quantum Transport in Nanoscale Transistors: Real Versus Mode-Space Approaches
,”
J. Appl. Phys.
0021-8979,
92
, pp.
3730
3739
.
35.
Kittel
,
C.
, 2005,
Introduction to Solid State Physics
, 8th ed.,
Wiley
,
New York
, p.
108
.
36.
Tascius
,
T.
,
Liu
,
W.
,
Liu
,
J.
,
Zeng
,
T.
,
Song
,
D.
,
Moore
,
C.
,
Chen
,
G.
,
Wang
,
K.
,
Goorsky
,
M.
,
Radetic
,
T.
,
Gronsky
,
R.
,
Koga
,
T.
, and
Dresselhaus
,
M.
, 2000, “
Thermal Conductivity of Symmetrically Strained Si∕Ge Superlattices
,”
Superlattices Microstruct.
0749-6036,
28
, pp.
199
206
.
37.
Chakraborty
,
S.
,
Kleint
,
C.
,
Heinrich
,
A.
,
Schneider
,
C.
, and
Schumann
,
J.
, 2003, “
Thermal Conductivity in Strain Symmetrized Si∕Ge Superlattices on Si(111)
,”
Appl. Phys. Lett.
0003-6951,
83
, pp.
4184
4186
.
38.
Lee
,
S.-M.
,
Cahill
,
D.
, and
Venkatasubramanian
,
R.
, 1997, “
Thermal Conductivity of Si-Ge Superlattices
,”
Appl. Phys. Lett.
0003-6951,
70
, pp.
2957
-
2959
.
39.
Stoner
,
R.
, and
Maris
,
H.
, 1993, “
Kapitza Conductance and Heat Flow Between Solids at Temperature From 50to300K
,”
Phys. Rev. B
0163-1829,
48
, pp.
16373
16387
.
40.
Costescu
,
R.
,
Wall
,
M.
, and
Cahill
,
D.
, 2003, “
Thermal Conductance of Epitaxial Interfaces
,”
Phys. Rev. B
0163-1829,
67
, p.
054302
.
41.
Cheeke
,
J.
,
Ettinger
,
H.
, and
Herbal
,
B.
, 1976, “
Analysis of Heat Transfer Between Solids at Low Temperatures
,”
Can. J. Phys.
0008-4204,
54
, pp.
1749
1763
.
42.
Holland
,
M.
, 1963, “
Analysis of Lattice Thermal Conductivity
,”
Phys. Rev.
0031-899X,
132
, pp.
2461
2471
.
You do not currently have access to this content.