Two different algorithms to accelerate ray tracing in surface-to-surface radiation Monte Carlo calculations are investigated. The first algorithm is the well-known binary spatial partitioning (BSP) algorithm, which recursively bisects the computational domain into a set of hierarchically linked boxes that are then made use of to narrow down the number of ray-surface intersection calculations. The second algorithm is the volume-by-volume advancement (VVA) algorithm. This algorithm is new and employs the volumetric mesh to advance the ray through the computational domain until a legitimate intersection point is found. The algorithms are tested for two classical problems, namely an open box, and a box in a box, in both two-dimensional (2D) and three-dimensional (3D) geometries with various mesh sizes. Both algorithms are found to result in orders of magnitude gains in computational efficiency over direct calculations that do not employ any acceleration strategy. For three-dimensional geometries, the VVA algorithm is found to be clearly superior to BSP, particularly for cases with obstructions within the computational domain. For two-dimensional geometries, the VVA algorithm is found to be superior to the BSP algorithm only when obstructions are present and are densely packed.

1.
Kersch
,
A.
, and
Morokoff
,
W.
, 1995,
Transport Simulations in Microelectronics
,
Birkhauser
, Basel.
2.
Chatterjee
,
S.
,
Trachtenberg
,
I.
, and
Edgar
,
T. F.
, 1992, “
Modeling of a Single Wafer Rapid Thermal Reactor
,”
J. Electrochem. Soc.
0013-4651,
139
, pp.
3682
3690
.
3.
Mazumder
,
S.
, and
Kersch
,
A.
, 1999, “
Effect of Thin Films on Radiative Transport in Chemical Vapor Deposition Systems
,” International Mechanical Engineering Congress and Exposition, Nashville, TN, ASME-HTD, Vol.
364-3
, pp.
9
13
.
4.
Modest
,
M. F.
, 2003,
Radiative Heat Transfer
, 2nd ed.,
Academic
, New York.
5.
Siegel
,
R.
, and
Howell
,
J. R.
, 2001,
Thermal Radiation Heat Transfer
, 4th ed.,
Taylor and Francis-Hemisphere
, London.
6.
Haji-Sheikh
,
A.
, 1988, “
Monte Carlo Methods
,” in
Handbook of Numerical Heat Transfer
,
W. J.
Minkowycz
,
E. M.
Sparrow
,
G. E.
Schneider
, and
R. H.
Pletcher
, eds.,
Wiley
, New York, Chap. 16.
7.
Maltby
,
J. D.
, and
Burns
,
P. J.
, 1991, “
Performance, Accuracy, and Convergence in a Three-Dimensional Monte Carlo Radiative Heat Transfer Simulation
,”
Numer. Heat Transfer, Part B
1040-7790,
19
(
2
), pp.
191
209
.
8.
Burns
,
P. J.
, and
Pryor
,
D. V.
, 1999, “
Surface Radiative Transport at Large Scales via Monte Carlo
,” in
Annual Review of Heat Transfer
,
C. L.
Tien
, ed.,
Begell House
, New York, Vol.
9
, pp.
79
158
.
9.
Burns
,
P. J.
,
Maltby
,
J. D.
, and
Christon
,
M. A.
, 1990, “
Large-Scale Surface to Surface Transport for Photons and Electrons via Monte Carlo
,”
Comput. Syst. Eng.
0956-0521,
1
(
1
), pp.
75
99
.
10.
Foley
,
J.
,
Van Dam
,
A.
,
Feiner
,
S.
, and
Hughes
,
J.
, 1990,
Computer Graphics Principles and Practice
,
Addison-Wesley
, Reading, MA.
11.
Arvo
,
J.
, and
Kirk
,
D.
, 1989, “
A Survey of Ray Tracing Acceleration Techniques
,” in
An Introduction to Ray Tracing
,
A. S.
Glassner
, ed.,
Academic Press
, San Diego, CA, pp.
201
262
.
12.
Glassner
,
A. S.
, 1984, “
Space Subdivision for Fast Ray Tracing
,”
IEEE Comput. Graphics Appl.
0272-1716,
4
(
10
), pp.
15
22
.
13.
Glassner
,
A. S.
, 1989,
An Introduction to Ray Tracing
,
Academic
, London.
14.
Mazumder
,
S.
, and
Kersch
,
A.
, 2000, “
A Fast Monte-Carlo Scheme for Thermal Radiation in Semiconductor Processing Applications
,”
Numer. Heat Transfer, Part B
1040-7790,
37
(
2
), pp.
185
199
.
15.
Sung
,
K.
, and
Shirley
,
P.
, 1992, “
Ray Tracing with a BSP Tree
,” in
Computer Graphics Gems III
,
D.
Kirk
, ed.,
AP Professional
, San Diego, CA, pp.
271
274
.
16.
Chin
,
N.
, 1995, “
A Walk Through BSP Trees
,” in
Computer Graphics Gems V
,
A. W.
Paeth
, ed.,
AP Professional
, San Diego, CA, pp.
121
138
.
17.
MacDonald
,
J. D.
, and
Booth
,
K. S.
, 1990, “
Heuristics for Ray Tracing Using Space Subdivision
,”
Visual Comput.
0178-2789,
6
(
3
), pp.
153
166
.
18.
Havran
,
V.
,
Kopal
,
T.
,
Bittner
,
J.
, and
Zara
,
J.
, 1998, “
Fast Robust BSP Tree Traversal Algorithm for Ray Tracing
,”
Journal of Graphics Tools
,
2
(
4
), pp.
15
23
.
19.
Zeeb
,
C. N.
,
Burns
,
P. J.
,
Branner
,
K.
, and
Dolaghan
,
J. S.
, 1999, User Manual for MONT3D–Version 2.4, Colorado State University, Fort Collins, CO, available online at www.colostate.edu/∼pburns/monte/manual.htmlwww.colostate.edu/∼pburns/monte/manual.html.
20.
Zeeb
,
C. N.
,
Dolaghan
,
J. S.
, and
Burns
,
P. J.
, 2001, “
An Efficient Monte Carlo Particle Tracing Algorithm for Large, Arbitrary Geometries
,”
Numer. Heat Transfer, Part B
1040-7790,
39
(
4
), pp.
325
344
.
21.
Shaughnessy
,
B. M.
, and
Newborough
,
M.
, 1998, “
New Method for Tracking Radiative Paths in Monte Carlo Simulations
,”
ASME J. Heat Transfer
0022-1481,
120
(
3
), pp.
792
795
.
22.
Kay
,
T. L.
, and
Kajiya
,
J. T.
, 1986, “
Ray Tracing Complex Scenes
,” in
Computer Graphics (SIGGRAPH ’86 Proceedings)
,
D. C.
Evans
and
R. J.
Athay
, eds., Vol.
20
, pp.
269
278
.
You do not currently have access to this content.