This study analyzes single burst ablation of dielectrics by a femtosecond pulse train that consists of one or multiple pulses. It is found that (1) there exist constant-ablation-depth zones with respect to fluence for one or multiple pulses per train and (2) for the same total fluence per train, although the ablation depth decreases in multiple pulses as compared to that of a single pulse, the depth of the constant-ablation-depth zone decreases. In other words, repeatable structures at the desired smaller nanoscales can be achieved in dielectrics by using the femtosecond pulse train technology, even when the laser fluence is subject to fluctuations. The predicted trends are in agreement with published experimental data.
1.
Li
, M.
, Menon
, S.
, Nibarger
, J. P.
, and Gibson
, G. N.
, 1999, “Ultrafast Electron Dynamics in Femtosecond Optical Breakdown of Dielectrics
,” Phys. Rev. Lett.
0031-9007, 82
, pp. 2394
–2397
.2.
Lenzner
, M.
, Krüger
, J.
, Sartania
, S.
, Cheng
, Z.
, Spielmann
, C.
, Mourou
, G.
, Kautek
, W.
, and Krausz
, F.
, 1998, “Femtosecond Optical Breakdown in Dielectrics
,” Phys. Rev. Lett.
0031-9007, 80
, pp. 4076
–4079
.3.
Chowdhury
, I. H.
, Xu
, X.
, and Weiner
, A. M.
, 2005, “Ultrafast Double-Pulse Ablation of Fused Silica
,” Appl. Phys. Lett.
0003-6951, 86
, p. 151110
.4.
Jiang
, L.
, and Tsai
, H. L.
, 2003, “Femtosecond Laser Ablation: Challenges and Opportunities
,” Proceeding of NSF Workshop on Research Needs in Thermal, Aspects of Material Removal
, Stillwater
, OK, pp. 163
–177
.5.
Stoian
, R.
, Ashkenasi
, D.
, Rosenfeld
, A.
, and Campbell
, E. E. B.
, 2000, “Coulomb Explosion in Ultrashort Pulsed Laser Ablation of Al2O3
,” Phys. Rev. B
0163-1829, 62
, pp. 13167
–13173
.6.
Perry
, M. D.
, Stuart
, B. C.
, Banks
, P. S.
, Feit
, M. D.
, Yanovsky
, V.
, and Rubenchik
, A. M.
, 1999, “Ultrashort-Pulse Laser Machining of Dielectric Materials
,” J. Appl. Phys.
0021-8979, 85
, pp. 6803
–6810
.7.
Jiang
, L.
, and Tsai
, H. L.
, 2004, “Prediction of Crater Shape in Femtosecond Laser Ablation of Dielectrics
,” J. Phys. D
0022-3727, 37
, pp. 1492
–1496
.8.
Jiang
, L.
, and Tsai
, H. L.
, 2005, “Energy Transport and Material Removal during Femtosecond Laser Ablation of Wide Bandgap Materials
,” Int. J. Heat Mass Transfer
0017-9310, 48
, pp. 487
–499
.9.
Jiang
, L.
, and Tsai
, H. L.
, 2005, “Improvements on Two-Temperature Models and Its Applications in Ultrashort Laser Damage of Metal Films
,” ASME J. Heat Transfer
0022-1481, 127
, pp. 1167
–1173
.10.
Bartels
, R.
, Backus
, S.
, Zeek
, E.
, Misoguti
, L.
, Vdovin
, G.
, Christov
, I. P.
, Murnane
, M. M.
, and Kapteyn
, H. C.
, 2000, “Shaped-Pulse Optimization of Coherent Emission of High-Harmonic Soft X-rays
,” Nature (London)
0028-0836, 406
, pp. 164
–166
.11.
Lindinger
, A.
, Lupulescu
, C.
, Plewicki
, M.
, Vetter
, F.
, Merli
, A.
, Weber
, M. S.
, and Wöste
, L.
, 2004, “Isotope Selective Ionization by Optimal Control Using Shaped Femtosecond Laser Pulses
,” Phys. Rev. Lett.
0031-9007, 93
, p. 033001
.12.
Renard
, M.
, Hertz
, E.
, Lavorel
, B.
, and Faucher
, O.
, 2004, “Controlling Ground-State Rotational Dynamics of Molecules by Shaped Femtosecond Laser Pulses
,” Phys. Rev. A
1050-2947, 69
, p. 043401
.13.
Assion
, A.
, Baumert
, T.
, Bergt
, M.
, Brixner
, T.
, Kiefer
, B.
, Seyfried
, V. V.
, Strehle
, M.
, and Gerber
, G.
, 1998, “Control of Chemical Reactions by Feedback-Optimized Phase-Shaped Femtosecond Laser Pulses
,” Science
0036-8075, 282
, pp. 919
–922
.14.
Andreev
, A. A.
, Limpouch
, J.
, Iskakov
, A. B.
, and Nakano
, H.
, 2002, “Enhancement of X- ray Line Emission from Plasmas Produced by Short High-Intensity Laser Double Pulses
,” Phys. Rev. E
1063-651X, 65
, p. 026403
.15.
Stoian
, R.
, Mermillod-Blondin
, A.
, Winkler
, S.
, Rosenfeld
, A.
, Hertel
, I. V.
, Spyridaki
, M.
, Koudoumas
, E.
, Fotakis
, C.
, Burakov
, I. M.
, and Bulgakova
, N. M.
, 2004, “Temporal Pulse Manipulation and Adaptive Optimization in Ultrafast Laser Processing of Materials
,” Proc. SPIE
0277-786X, 5662
, pp. 593
–602
.16.
Stoian
, R.
, Boyle
, M.
, Thoss
, A.
, Rosenfeld
, A.
, Korn
, G.
, Hertel
, I. V.
, and Campbell
, E. E. B.
, 2002, “Laser Ablation of Dielectrics With Temporally Shaped Femtosecond Pulses
,” Appl. Phys. Lett.
0003-6951, 80
, pp. 353
–355
.17.
Spyridaki
, M.
, Koudoumas
, E.
, Tzanetakis
, P.
, Fotakis
, C.
, Stoian
, R.
, Rosenfeld
, A.
, and Hertel
, I. V.
, 2003, “Temporal Pulse Manipulation and Ion Generation in Ultrafast Laser Ablation of Silicon
,” Appl. Phys. Lett.
0003-6951, 83
, pp. 1474
–1476
.18.
Choi
, T. Y.
, Hwang
, D. J.
, and Grigoropoulos
, C. P.
, 2002, “Femtosecond Laser Induced Ablation of Crystalline Silicon upon Double Beam Irradiation
,” Appl. Surf. Sci.
0169-4332, 197-198
, pp. 720
–725
.19.
Stuart
, B. C.
, Feit
, M. D.
, Herman
, S.
, Rubenchik
, A. M.
, Shore
, B. W.
, and Perry
, M. D.
, 1996, “Nanosecond-to-Femtosecond Laser-Induced Breakdown in Dielectrics
,” Phys. Rev. B
0163-1829, 53
, pp. 1749
–1761
.20.
Stuart
, B. C.
, Feit
, M. D.
, Rubenchik
, A. M.
, Shore
, B. W.
, and Perry
, M. D.
, 1995, “Laser-Induced Damage in Dielectrics With Nanosecond to Subpicosecond Pulses
,” Phys. Rev. Lett.
0031-9007, 74
, pp. 2248
–2251
.21.
Gamaly
, E. G.
, Rode
, A. V.
, Luther-Davies
, B.
, and Tikhonchuk
, V. T.
, 2002, “Ablation of Solids by Femtosecond Lasers: Ablation Mechanism and Ablation Thresholds for Metals and Dielectrics
,” Phys. Plasmas
1070-664X, 9
, pp. 949
–957
.22.
Du
, D.
, Liu
, X.
, Korn
, G.
, Squier
, J.
, and Mourou
, G.
, 1994, “Laser-Induced Breakdown by Impact Ionization in SiO2 With Pulse Widths From 7ns to 150fs
,” Appl. Phys. Lett.
0003-6951, 64
, pp. 3071
–3074
.23.
Rethfeld
, B.
, Kaiser
, A.
, Vicanek
, M.
, and Simon
, G.
, 2002, “Ultrafast Dynamics of Nonequilibrium Electrons in Metals Under Femtosecond Laser Irradiation
,” Phys. Rev. B
0163-1829, 65
, p. 214303
.24.
Jiang
, L.
, and Tsai
, H. L.
, 2006, “Plasma Modeling for Femtosecond Laser Ablation of Dielectrics
,” J. Appl. Phys.
0021-8979, 100
(2
), p. 023116
.25.
Fox
, M.
, 2001, Optical Properties of Solids
, Oxford University Press
, Oxford.26.
Ashcroft
, N. W.
, and Mermin
, N. D.
, 1976, Solid State Physics
, Holt
, Rinehart.27.
Lee
, Y. T.
, and More
, R. M.
, 1984, “An Electron Conductivity Model for Dense Plasma
,” Phys. Fluids
0031-9171, 27
(5
), pp. 1273
–1286
.28.
Eidmann
, K.
, Meyer-ter-Vehn
, J.
, Schlegel
, T.
, and Hüller
, S.
, 2000, “Hydrodynamic Simulation of Subpicosecond Laser Interaction With Solid-Density Matter
,” Phys. Rev. E
1063-651X, 62
, pp. 1202
–1214
.29.
Wu
, Z.
, Jiang
, H.
, Zhang
, Z.
, Sun
, Q.
, Yang
, H.
, and Gong
, Q.
, 2002, “Morphological Investigation at the Front and Rear Surfaces of Fused Silica Processed With Femtosecond Laser Pulses in Air
,” Opt. Express
1094-4087, 10
, pp. 1244
–1249
.30.
Bonse
, J.
, Munz
, M.
, and Sturm
, H.
, 2004, “Scanning Force Microscopic Investigations of the Femtosecond Laser Pulse Irradiation of Indium Phosphide in Air
,” IEEE Trans. Nanotechnol.
1536-125X, 3
, pp. 358
–367
.31.
Nakamura
, S.
, Hoshino
, M.
, and Ito
, Y.
, 2001, “Monitoring of CW YAG Laser Welding Using Optical and Acoustic Signals
,” Proceedings of ICALEO
, Jacksonville
, FL.32.
Lapczyna
, M.
, Chen
, K. P.
, Herman
, P. R.
, Tan
, H. W.
, and Marjoribanks
, R. S.
, 1999, “Ultra High Repetition Rate (133MHz) Laser Ablation of Aluminum With 1:2-ps Pulses
,” Appl. Phys. A: Mater. Sci. Process.
0947-8396, 69
, pp. S883
–S886
.33.
Herman
, P. R.
, Oettl
, A.
, Chen
, K. P.
, and Marjoribanks
, R. S.
, 1999, “Laser Micromachining of ‘Transparent’ Fused Silica With 1-ps Pulses and Pulse Trains
,” Proc. SPIE
0277-786X, 3616
, pp. 148
–155
.34.
Chichkov
, B. N.
, Ostendorf
, A.
, Korte
, F.
, and Nolte
, S.
, 2001, “Femtosecond Laser Ablation and Nanostructuring
,” Proceedings of ICALEO
, Jacksonville
, FL.Copyright © 2006
by American Society of Mechanical Engineers
You do not currently have access to this content.