This study analyzes single burst ablation of dielectrics by a femtosecond pulse train that consists of one or multiple pulses. It is found that (1) there exist constant-ablation-depth zones with respect to fluence for one or multiple pulses per train and (2) for the same total fluence per train, although the ablation depth decreases in multiple pulses as compared to that of a single pulse, the depth of the constant-ablation-depth zone decreases. In other words, repeatable structures at the desired smaller nanoscales can be achieved in dielectrics by using the femtosecond pulse train technology, even when the laser fluence is subject to fluctuations. The predicted trends are in agreement with published experimental data.

1.
Li
,
M.
,
Menon
,
S.
,
Nibarger
,
J. P.
, and
Gibson
,
G. N.
, 1999, “
Ultrafast Electron Dynamics in Femtosecond Optical Breakdown of Dielectrics
,”
Phys. Rev. Lett.
0031-9007,
82
, pp.
2394
2397
.
2.
Lenzner
,
M.
,
Krüger
,
J.
,
Sartania
,
S.
,
Cheng
,
Z.
,
Spielmann
,
C.
,
Mourou
,
G.
,
Kautek
,
W.
, and
Krausz
,
F.
, 1998, “
Femtosecond Optical Breakdown in Dielectrics
,”
Phys. Rev. Lett.
0031-9007,
80
, pp.
4076
4079
.
3.
Chowdhury
,
I. H.
,
Xu
,
X.
, and
Weiner
,
A. M.
, 2005, “
Ultrafast Double-Pulse Ablation of Fused Silica
,”
Appl. Phys. Lett.
0003-6951,
86
, p.
151110
.
4.
Jiang
,
L.
, and
Tsai
,
H. L.
, 2003, “
Femtosecond Laser Ablation: Challenges and Opportunities
,”
Proceeding of NSF Workshop on Research Needs in Thermal, Aspects of Material Removal
,
Stillwater
, OK, pp.
163
177
.
5.
Stoian
,
R.
,
Ashkenasi
,
D.
,
Rosenfeld
,
A.
, and
Campbell
,
E. E. B.
, 2000, “
Coulomb Explosion in Ultrashort Pulsed Laser Ablation of Al2O3
,”
Phys. Rev. B
0163-1829,
62
, pp.
13167
13173
.
6.
Perry
,
M. D.
,
Stuart
,
B. C.
,
Banks
,
P. S.
,
Feit
,
M. D.
,
Yanovsky
,
V.
, and
Rubenchik
,
A. M.
, 1999, “
Ultrashort-Pulse Laser Machining of Dielectric Materials
,”
J. Appl. Phys.
0021-8979,
85
, pp.
6803
6810
.
7.
Jiang
,
L.
, and
Tsai
,
H. L.
, 2004, “
Prediction of Crater Shape in Femtosecond Laser Ablation of Dielectrics
,”
J. Phys. D
0022-3727,
37
, pp.
1492
1496
.
8.
Jiang
,
L.
, and
Tsai
,
H. L.
, 2005, “
Energy Transport and Material Removal during Femtosecond Laser Ablation of Wide Bandgap Materials
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
487
499
.
9.
Jiang
,
L.
, and
Tsai
,
H. L.
, 2005, “
Improvements on Two-Temperature Models and Its Applications in Ultrashort Laser Damage of Metal Films
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
1167
1173
.
10.
Bartels
,
R.
,
Backus
,
S.
,
Zeek
,
E.
,
Misoguti
,
L.
,
Vdovin
,
G.
,
Christov
,
I. P.
,
Murnane
,
M. M.
, and
Kapteyn
,
H. C.
, 2000, “
Shaped-Pulse Optimization of Coherent Emission of High-Harmonic Soft X-rays
,”
Nature (London)
0028-0836,
406
, pp.
164
166
.
11.
Lindinger
,
A.
,
Lupulescu
,
C.
,
Plewicki
,
M.
,
Vetter
,
F.
,
Merli
,
A.
,
Weber
,
M. S.
, and
Wöste
,
L.
, 2004, “
Isotope Selective Ionization by Optimal Control Using Shaped Femtosecond Laser Pulses
,”
Phys. Rev. Lett.
0031-9007,
93
, p.
033001
.
12.
Renard
,
M.
,
Hertz
,
E.
,
Lavorel
,
B.
, and
Faucher
,
O.
, 2004, “
Controlling Ground-State Rotational Dynamics of Molecules by Shaped Femtosecond Laser Pulses
,”
Phys. Rev. A
1050-2947,
69
, p.
043401
.
13.
Assion
,
A.
,
Baumert
,
T.
,
Bergt
,
M.
,
Brixner
,
T.
,
Kiefer
,
B.
,
Seyfried
,
V. V.
,
Strehle
,
M.
, and
Gerber
,
G.
, 1998, “
Control of Chemical Reactions by Feedback-Optimized Phase-Shaped Femtosecond Laser Pulses
,”
Science
0036-8075,
282
, pp.
919
922
.
14.
Andreev
,
A. A.
,
Limpouch
,
J.
,
Iskakov
,
A. B.
, and
Nakano
,
H.
, 2002, “
Enhancement of X- ray Line Emission from Plasmas Produced by Short High-Intensity Laser Double Pulses
,”
Phys. Rev. E
1063-651X,
65
, p.
026403
.
15.
Stoian
,
R.
,
Mermillod-Blondin
,
A.
,
Winkler
,
S.
,
Rosenfeld
,
A.
,
Hertel
,
I. V.
,
Spyridaki
,
M.
,
Koudoumas
,
E.
,
Fotakis
,
C.
,
Burakov
,
I. M.
, and
Bulgakova
,
N. M.
, 2004, “
Temporal Pulse Manipulation and Adaptive Optimization in Ultrafast Laser Processing of Materials
,”
Proc. SPIE
0277-786X,
5662
, pp.
593
602
.
16.
Stoian
,
R.
,
Boyle
,
M.
,
Thoss
,
A.
,
Rosenfeld
,
A.
,
Korn
,
G.
,
Hertel
,
I. V.
, and
Campbell
,
E. E. B.
, 2002, “
Laser Ablation of Dielectrics With Temporally Shaped Femtosecond Pulses
,”
Appl. Phys. Lett.
0003-6951,
80
, pp.
353
355
.
17.
Spyridaki
,
M.
,
Koudoumas
,
E.
,
Tzanetakis
,
P.
,
Fotakis
,
C.
,
Stoian
,
R.
,
Rosenfeld
,
A.
, and
Hertel
,
I. V.
, 2003, “
Temporal Pulse Manipulation and Ion Generation in Ultrafast Laser Ablation of Silicon
,”
Appl. Phys. Lett.
0003-6951,
83
, pp.
1474
1476
.
18.
Choi
,
T. Y.
,
Hwang
,
D. J.
, and
Grigoropoulos
,
C. P.
, 2002, “
Femtosecond Laser Induced Ablation of Crystalline Silicon upon Double Beam Irradiation
,”
Appl. Surf. Sci.
0169-4332,
197-198
, pp.
720
725
.
19.
Stuart
,
B. C.
,
Feit
,
M. D.
,
Herman
,
S.
,
Rubenchik
,
A. M.
,
Shore
,
B. W.
, and
Perry
,
M. D.
, 1996, “
Nanosecond-to-Femtosecond Laser-Induced Breakdown in Dielectrics
,”
Phys. Rev. B
0163-1829,
53
, pp.
1749
1761
.
20.
Stuart
,
B. C.
,
Feit
,
M. D.
,
Rubenchik
,
A. M.
,
Shore
,
B. W.
, and
Perry
,
M. D.
, 1995, “
Laser-Induced Damage in Dielectrics With Nanosecond to Subpicosecond Pulses
,”
Phys. Rev. Lett.
0031-9007,
74
, pp.
2248
2251
.
21.
Gamaly
,
E. G.
,
Rode
,
A. V.
,
Luther-Davies
,
B.
, and
Tikhonchuk
,
V. T.
, 2002, “
Ablation of Solids by Femtosecond Lasers: Ablation Mechanism and Ablation Thresholds for Metals and Dielectrics
,”
Phys. Plasmas
1070-664X,
9
, pp.
949
957
.
22.
Du
,
D.
,
Liu
,
X.
,
Korn
,
G.
,
Squier
,
J.
, and
Mourou
,
G.
, 1994, “
Laser-Induced Breakdown by Impact Ionization in SiO2 With Pulse Widths From 7ns to 150fs
,”
Appl. Phys. Lett.
0003-6951,
64
, pp.
3071
3074
.
23.
Rethfeld
,
B.
,
Kaiser
,
A.
,
Vicanek
,
M.
, and
Simon
,
G.
, 2002, “
Ultrafast Dynamics of Nonequilibrium Electrons in Metals Under Femtosecond Laser Irradiation
,”
Phys. Rev. B
0163-1829,
65
, p.
214303
.
24.
Jiang
,
L.
, and
Tsai
,
H. L.
, 2006, “
Plasma Modeling for Femtosecond Laser Ablation of Dielectrics
,”
J. Appl. Phys.
0021-8979,
100
(
2
), p.
023116
.
25.
Fox
,
M.
, 2001,
Optical Properties of Solids
,
Oxford University Press
, Oxford.
26.
Ashcroft
,
N. W.
, and
Mermin
,
N. D.
, 1976,
Solid State Physics
,
Holt
, Rinehart.
27.
Lee
,
Y. T.
, and
More
,
R. M.
, 1984, “
An Electron Conductivity Model for Dense Plasma
,”
Phys. Fluids
0031-9171,
27
(
5
), pp.
1273
1286
.
28.
Eidmann
,
K.
,
Meyer-ter-Vehn
,
J.
,
Schlegel
,
T.
, and
Hüller
,
S.
, 2000, “
Hydrodynamic Simulation of Subpicosecond Laser Interaction With Solid-Density Matter
,”
Phys. Rev. E
1063-651X,
62
, pp.
1202
1214
.
29.
Wu
,
Z.
,
Jiang
,
H.
,
Zhang
,
Z.
,
Sun
,
Q.
,
Yang
,
H.
, and
Gong
,
Q.
, 2002, “
Morphological Investigation at the Front and Rear Surfaces of Fused Silica Processed With Femtosecond Laser Pulses in Air
,”
Opt. Express
1094-4087,
10
, pp.
1244
1249
.
30.
Bonse
,
J.
,
Munz
,
M.
, and
Sturm
,
H.
, 2004, “
Scanning Force Microscopic Investigations of the Femtosecond Laser Pulse Irradiation of Indium Phosphide in Air
,”
IEEE Trans. Nanotechnol.
1536-125X,
3
, pp.
358
367
.
31.
Nakamura
,
S.
,
Hoshino
,
M.
, and
Ito
,
Y.
, 2001, “
Monitoring of CW YAG Laser Welding Using Optical and Acoustic Signals
,”
Proceedings of ICALEO
,
Jacksonville
, FL.
32.
Lapczyna
,
M.
,
Chen
,
K. P.
,
Herman
,
P. R.
,
Tan
,
H. W.
, and
Marjoribanks
,
R. S.
, 1999, “
Ultra High Repetition Rate (133MHz) Laser Ablation of Aluminum With 1:2-ps Pulses
,”
Appl. Phys. A: Mater. Sci. Process.
0947-8396,
69
, pp.
S883
S886
.
33.
Herman
,
P. R.
,
Oettl
,
A.
,
Chen
,
K. P.
, and
Marjoribanks
,
R. S.
, 1999, “
Laser Micromachining of ‘Transparent’ Fused Silica With 1-ps Pulses and Pulse Trains
,”
Proc. SPIE
0277-786X,
3616
, pp.
148
155
.
34.
Chichkov
,
B. N.
,
Ostendorf
,
A.
,
Korte
,
F.
, and
Nolte
,
S.
, 2001, “
Femtosecond Laser Ablation and Nanostructuring
,”
Proceedings of ICALEO
,
Jacksonville
, FL.
You do not currently have access to this content.