Abstract

A unit-cube geometry model is proposed to characterize the internal structure of porous carbon foam. The unit-cube model is based on interconnected sphere-centered cubes, where the interconnected spheres represent the fluid or void phase. The unit-cube model is used to derive all of the geometric parameters required to calculate the heat transfer and flow through the porous foam. An expression for the effective thermal conductivity is derived based on the unit-cube geometry. Validations show that the conductivity model gives excellent predictions of the effective conductivity as a function of porosity. When combined with existing expressions for the pore-level Nusselt number, the proposed model also yields reasonable predictions of the internal convective heat transfer, but estimates could be improved if a Nusselt number expression for a spherical void phase material were available. Estimates of the fluid pressure drop are shown to be well-described using the Darcy-Forchhiemer law, however, further exploration is required to understand how the permeability and Forchhiemer coefficients vary as a function of porosity and pore diameter.

1.
Klett
,
W. J.
, 2000, “
Process for Making Carbon Foam
,” United State Patent No. 6,033,506.
2.
Klett
,
W. J.
,
Hardy
,
R.
,
Romine
,
E.
,
Walls
,
C.
, and
Burchell
,
T.
, 2000, “
High-Thermal Conductivity, Mesophase-Pitch-Derived Carbon Foam: Effect of Precursor on Structure and Properties
,”
Carbon
0008-6223,
38
, pp.
953
973
.
3.
Gallego
,
C. N.
, and
Klett
,
W. J.
, 2003, “
Carbon Foams for Thermal Management
,”
Carbon
0008-6223,
41
, pp.
1461
1466
.
4.
Dullien
,
F. A. L.
, 1979,
Porous Media Fluid Transfer and Pore Structure
,
Academic
,
New York
.
5.
Hwang
,
G. J.
,
Wu
,
C. C.
, and
Chao
,
C. H.
, 1995, “
Investigation of Non-Darcy Forced Convection in an Asymmetrically Heated Sintered Porous Channel
,”
ASME J. Heat Transfer
0022-1481,
117
, pp.
725
731
.
6.
Paek
,
W. J.
,
Kang
,
H. B.
,
Kim
,
Y. S.
, and
Hyum
,
M. J.
, 2000, “
Effective Thermal Conductivity and Permeability of Aluminum Foam Materials
,”
Int. J. Thermophys.
0195-928X,
21
(
2
),
453
464
.
7.
Deissler
,
R. G.
, and
Boegli
,
J. S.
, 1958, “
An Investigation of Effective Thermal Conductivities of Powders in Various Gases
,”
Trans. ASME
0097-6822,
80
(
7
), pp.
1417
1423
.
8.
Batchelor
,
G. K.
, and
O’Brien
,
R. W.
, 1977, “
Thermal or Electrical Conduction Through a Granular Material
,”
Proc. R. Soc. London, Ser. A
1364-5021,
355
, pp.
313
333
.
9.
Luikov
,
A. V.
,
Shashkov
,
A. G.
,
Vasiliev
,
L. L.
, and
Fraiman
,
Y. E.
, 1968, “
Thermal Conductivity of Porous System
,”
Int. J. Heat Mass Transfer
0017-9310,
11
, pp.
117
140
.
10.
Bhattacharya
,
A.
,
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
, 2002, “
Thermophysical Properties of High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
1017
1031
.
11.
Tee
,
C. C.
,
Klett
,
J. W.
,
Stinton
,
D. P.
, and
Yu
,
N.
, 1999, “
Thermal Conductivity of Porous Carbon fFam
,”
Proceedings of the 24th Biennial Conference on Carbon
,
Charleston, SC
.
12.
Klett
,
J. W.
,
McMillan
,
A. D.
,
Gallego
,
N. C.
, and
Walls
,
C.
, 2004, “
The Role of Structure on the Thermal Properties of Graphitic Foams
,”
J. Mater. Sci.
0022-2461,
39
,
3659
3676
.
13.
Ergun
,
S.
, 1952, “
Fluid Flow Through Packed Columns
,”
Chem. Eng. Prog.
0360-7275,
48
, pp.
89
94
.
14.
Nakayama
,
A.
, and
Kuwahara
,
F.
, 2000, “
Numerical Modeling of Convective Heat Transfer in Porous Media Using Microscopic Structures
,” in
Handbook of Porous Media
,
K.
Vafai
and
H. A.
Hadim
, eds.,
Marcel Dekker
,
New York
,
449
pp.
15.
Ward
,
C. J.
, 1964, “
Turbulent Flow in Porous Media
,”
J. Hydraulics Division, Proceeding of the American Society of the Civil Engineers
, HY5, pp.
1
11
.
16.
Kaviany
,
M.
, 1995,
Principles of Heat Transfer in Porous Media
, 2nd ed.,
Springer
,
New York
.
17.
Bear
,
J.
, and
Corapcioglu
,
M. Y.
, 1984,
Fundamentals of Transport Phenomena in Porous Media
,
J.
Bear
and
M. Y.
Corapcioglu
, eds.,
Martinus Nijhoff
,
Dordrecht
.
18.
Bear
,
J.
, and
Corapcioglu
,
M. Y.
, 1987,
Advances in Transport Phenomena in Porous Media
,
J.
Bear
and
M. Y.
Corapcioglu
, eds.,
Martinus Nijhoff
,
Dordrecht
.
19.
Bear
,
J.
, and
Corapcioglu
,
M. Y.
, 1991,
Transport Processes in Porous Media
,
J.
Bear
and
M. Y.
Corapcioglu
, eds.,
Kluwer Academic
,
Dordrecht
.
20.
Kakac
,
S.
,
Killis
,
B.
,
Kulacki
,
A. F.
, and
Arinc
,
F.
, 1991,
Convetinve Heat and Mass Transfer in Porous Media
,
S.
Kakac
,
B.
Killis
,
F. A.
Kulacki
, and
F.
Arinc
, eds.,
Kluwer Academic
,
Dordrecht
.
21.
Vafai
,
K.
, and
Hadim
,
A. H.
, 2000,
Handbook of Porous Media
,
K.
Vafai
and
H. A.
Hadim
, eds.,
Marcel Dekker
,
New York
.
22.
Gamson
,
B. W.
,
Thodos
,
G.
, and
Hougen
,
O. A.
, 1943, “
Heat, Mass and Momentum Transfer in the Flow Gases Through Granular Solid
,”
Trans. Am. Inst. Chem. Eng.
0096-7408,
39
, pp.
1
35
.
23.
Kar
,
K. K.
, and
Dybbs
,
A.
, 1982, “
Internal Heat Transfer Coefficients of Porous Metals
,” in
Heat Transfer in Porous Media
,
J. V.
Beck
and
L. S.
Yao
, eds., HTD-22, ASME.
24.
Straatman
,
A. G.
,
Gallego
,
N. C.
,
Yu
,
Q.
, and
Thompson
,
B. E.
, 2005, “
Characterization of Porous Carbon Foam as a Material for Compact Recuperators
,”
Proceedings of ASME Turbo Expo 2006
, Paper No. GT2006–50958,
Barcelona, Spain
, May 2006.
25.
Taylor
,
G. I.
, 1971, “
A Model for the Boundary Condition of a Porous Material. Part 1
,”
J. Fluid Mech.
0022-1120,
49
, pp.
319
326
.
26.
Dybbs
,
A.
, and
Edwards
,
R. V.
, 1984, “
A New Look at Porous Media Fluid Mechanics-Darcy to Turbulent
,” in
Fundamentals of Transport Phenomena in Porous Media
,
J.
Bear
and
M. Y.
Corapcioglu
, eds.,
Martinus Nijhoff
,
Dordrecht
, pp.
199
254
.
27.
Tadrist
,
L.
,
Miscevic
,
M.
,
Rahli
,
O.
, and
Topin
,
F.
, 2004, “
About the Use of Fibrous Materials in Compact Heat Exchangers
,”
Exp. Therm. Fluid Sci.
0894-1777,
28
, pp.
193
199
.
28.
Yu
,
Q.
,
Straatman
,
A. G.
, and
Thompson
,
B. E.
, 2006, “
Carbon Foam Finned-Tubes in Air-Water Heat Exchangers
,”
Appl. Therm. Eng.
1359-4311,
26
, pp.
131
143
.
You do not currently have access to this content.