A new model is presented to compute nucleate boiling heat and mass transfer. It is based on a previous one (Kern, J., and Stephan, P., 2003, ASME J. Heat Transfer, 125, pp. 1106–1115) for quasi-stationary heat transfer to single vapor bubbles. In contrast to the preceding model, fully transient heat and fluid flow is computed with a free surface of the rising bubble and a periodic calculation of repeated cycles of bubble growth, detachment, and rise, requiring only specification of the waiting time between successive bubbles. Additionally, microscopic effects at the foot of the bubble are considered. The model is verified by comparing computed with measured heat transfer coefficients. Typical results for heat and mass transfer to a single vapor bubble are shown at all time steps of the bubble cycle. By means of the model the transient heat flow through different interfaces, e.g., wall/liquid or liquid/vapor, is computed for the whole bubble cycle. Thus, it was possible to evaluate the influence of transient heat conduction, heat storage, and convection in liquid as well as heat transfer in the wall on overall heat transfer performance.

1.
Beer
,
H.
, 1971, “
Das dynamische Blasenwachstum beim Sieden von Flüssigkeiten an Heizflächen
,”
Forsch. Ingenieurwes.
0015-7899,
37
, pp.
85
90
.
2.
Buchholz
,
M.
,
Auracher
,
H.
,
Lüttich
,
T.
, and
Marquardt
,
W.
, 2004, “
Experimental Investigation of Local Processes in Pool Boiling Along the Entire Boiling Curve
,”
Int. J. Heat Fluid Flow
0142-727X,
25
, pp.
243
261
.
3.
Bae
,
S.
,
Kim
,
M.
, and
Kim
,
J.
, 1999, “
Improved Technique to Measure Time- and Space-Resolved Heat Transfer Under Single Bubbles During Saturated Pool Boiling of FC-72
,”
Exp. Heat Transfer
0891-6152,
12
, pp.
265
278
.
4.
Demiray
,
F.
, and
Kim
,
J.
, 2004, “
Microscale Heat Transfer Measurements During Pool Boiling of FC-72: Effect of Subcooling
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
3257
3268
.
5.
Kenning
,
D. B. R.
, and
Yan
,
Y.
, 1996, “
Pool Boiling Heat Transfer on a Thin Plate: Features Revealed by Liquid Crystal Technology
,”
Int. J. Heat Mass Transfer
0017-9310,
39
, pp.
3117
3137
.
6.
Höhmann
,
C.
, and
Stephan
,
P.
, 2002, “
Microscale Temperature Measurement at an Evaporating Liquid Meniscus
,”
Exp. Therm. Fluid Sci.
0894-1777,
26
, pp.
157
162
.
7.
Sodtke
,
C.
,
Kern
,
J.
, and
Stephan
,
P.
, 2006, “
High Resolution Measurements of Wall Temperature Distribution Underneath a Single Vapor Bubble Under Microgravity Conditions
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
1100
1106
.
8.
Wayner
,
P. C.
,
Kao
,
Y. K.
, and
La Croix
,
L. V.
, 1976, “
The Interline Heat Transfer Coefficient on an Evaporating Wetting Film
,”
Int. J. Heat Mass Transfer
0017-9310,
19
, pp.
487
492
.
9.
Stephan
,
P.
, and
Hammer
,
J.
, 1994, “
A New Model for Nucleate Boiling Heat Transfer
,”
Heat Mass Transfer
0947-7411,
30
, pp.
119
125
.
10.
Kern
,
J.
, and
Stephan
,
P.
, 2003, “
Theoretical Model for Nucleate Boiling Heat and Mass Transfer of Binary Mixtures
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
1106
1115
.
11.
Dhir
,
V. K.
, 2001, “
Numerical Simulations of Pool-Boiling Heat Transfer
,”
AIChE J.
0001-1541,
47
, pp.
813
834
.
12.
Fujita
,
Y.
, and
Bai
,
Q.
, 1998, “
Numerical Simulation of the Growth for an Isolated Bubble in Nucleate Boiling
,” in Proceedings of the Eleventh Heat Transfer Conference,
J. S.
Lee
(Ed.),
Taylor & Francis
, Philadelphia, PA, pp.
437
442
.
13.
Fuchs
,
T.
,
Kern
,
J.
, and
Stephan
,
P.
, 2006, “
Transient Simulations of the Heat Transfer in the Liquid Boundary Layer and the Heater Wall for Nucleate Pool Boiling
,” in
Proceedings of the 13th International Heat Transfer Conference
,
Sydney
, BOI-26.
14.
Wang
,
C. H.
, and
Dhir
,
V.
, 1993, “
On the Gas Entrapment and Nucleation Site Density During Pool Boiling of Saturated Water
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
670
679
.
15.
Hibiki
,
T.
, and
Ishii
,
M.
, 2001, “
Active Nucleation Site Density in Boiling Systems
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
2587
2601
.
16.
Benjamin
,
R. J.
, and
Balakrishnan
,
A. R.
, 1997, “
Nucleation Site Density in Pool Boiling of Binary Mixtures: Effect of Surface Micro-Roughness and Surface and Liquid Physical Properties
,”
Can. J. Chem. Eng.
0008-4034,
75
, pp.
1080
1089
.
17.
Schmidt
,
J. G.
, 1995, “
Blasenbildung beim Sieden von Stoffgemischen
,” Ph.D. thesis, Universität Karlsruhe (TH), Germany.
18.
Krupiczka
,
R.
,
Rotkegel
,
A.
, and
Ziobrowski
,
Z.
, 2000, “
The Influence of Mass Transfer on the Heat Transfer Coefficients During the Boiling of Multicomponent Mixtures
,”
Int. J. Therm. Sci.
1290-0729,
39
, pp.
667
672
.
19.
Stephan
,
P.
, 1992, “
Wärmedurchgang bei der Verdampfung aus Kapillarrillen in Wärmerohren
,”
Fortschr.-Ber. VDI, Reihe 6
0178-9414,
19
(
59
), VDI Verlag, Düsseldorf.
20.
Mann
,
M.
, 2001, “
Ein Mikrozonenmodell zur Beschreibung der Blasenbildung und des Wärmeübergangs beim Sieden
,”
Fortschr.-Ber. VDI, Reihe 6
0178-9414,
3
(
708
), VDI Verlag, Düsseldorf.
21.
Kern
,
J.
, and
Stephan
,
P.
, 2003, “
Investigation of Decisive Mixture Effects in Nucleate Boiling of Binary Mixtures Using a Theoretical Model
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
1116
1122
.
22.
Stephan
,
K.
, 1992,
Heat Transfer in Condensation and Boiling
,
Springer-Verlag
, Berlin.
23.
Frank
,
M. R.
, and
Lazarus
,
R. B.
, 1964, “
Mixed Euler-Lagrange Method
,”
Methods Comput. Phys.
0076-6860,
3
, pp.
47
67
.
24.
Noh
,
W. F.
,
Adler
,
B.
,
Fernbach
,
S.
, and
Rothenberger
,
M.
(eds.), 1964, “
CEL: A Time-Dependent Two-Space-Dimensional Coupled Eulerian-Lagrangian Code
,”
Methods Comput. Phys.
0076-6860,
3
, pp.
117
180
.
25.
Hirt
,
C. W.
,
Amsden
,
A. A.
, and
Cook
,
J. L.
, 1974, “
An Arbitrary Lagrangian-Eulerian Computing Method for All Speeds
,”
J. Comput. Phys.
0021-9991,
14
, pp.
227
253
.
26.
Hughes
,
T. J. R.
,
Liu
,
W. K.
, and
Zimmermann
,
T. K.
, 1981, “
Lagrangian-Eulerian Finite Element Formulation for Incompressible Viscous Flows
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
29
, pp.
329
349
.
27.
Donea
,
J.
, and
Huerta
,
A.
, 2003,
Finite Element Methods for Flow Problems
,
Wiley
, New York.
28.
Ingenieursbureau Sepra, 1993, “SEPRAN, A Finite Element Code. User Manual,” (http://ta.twi.tudelft.nl/NW/sepran/um.pdfhttp://ta.twi.tudelft.nl/NW/sepran/um.pdf).
29.
Girault
,
V.
, and
Raviart
,
P. A.
, 1979,
Finite Element Approximation of the Navier-Stokes Equations
, Lecture Notes in Mathematics, Vol.
749
,
Springer Verlag
, Berlin.
30.
Martin
,
J. C.
, and
Moyce
,
W. J.
, 1952, “
An Experimental Study of the Collapse of Liquid Columns on a Rigid Horizontal Plane
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
224
, pp.
312
334
.
31.
Harlow
,
F.
, and
Welch
,
J.
, 1965, “
Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface
,”
Phys. Fluids
0031-9171,
8
, pp.
2182
2189
.
32.
Hirt
,
C.
, and
Nichols
,
B.
, 1981, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
0021-9991,
39
, pp.
201
225
.
33.
Griebel
,
M.
,
Dornseifer
,
T.
, and
Neunhoeffer
,
T.
, 1995,
Numerische Simulation in der Strömungsmechanik
,
Vieweg
, Wiesbaden.
34.
Raymond
,
F.
, and
Rosant
,
J.-M.
, 2000, “
A Numerical and Experimental Study of the Terminal Velocity and Shape of Bubbles in Viscous Liquids
,”
Chem. Eng. Sci.
0009-2509,
55
, pp.
943
955
.
35.
Bednar
,
W. H.
, and
Bier
,
K.
, 1994, “
Wärmeübergang beim Blasensieden von binären Kohlenwasserstoffgemischen
,”
Fortschr.-Ber. VDI, Reihe 6
0178-9414,
3
(
357
), VDI Verlag, Düsseldorf.
36.
Mann
,
M.
, and
Stephan
,
K.
, 2000, “
Influence of Convection on Nucleate Boiling Heat Transfer Around Horizontal Tubes
,”
Multiphase Sci. Technol.
0276-1459,
12
, pp.
1
13
.
37.
Stephan
,
K.
, 1964,
Beitrag zur Thermodynamik des Wärmeübergangs beim Sieden
,
Verlag C.F. Müller
, Karlsruhe.
You do not currently have access to this content.