This study applies the lattice Boltzmann method (LBM) to simulate incompressible steady low Reynolds number backward-facing step flows. In order to restrict the simulations to two-dimensional flows, the investigated Reynolds number range is limited to a maximum value of Re=200. The field synergy principle is applied to demonstrate that the increased interruption within the fluid caused by the introduction of two inclined plates reduces the intersection angle between the velocity vector and the temperature gradient. The present results obtained for the velocity and temperature fields are found to be in good agreement with the published experimental and numerical results. Furthermore, the numerical results confirm the relationship between the velocity and temperature gradient predicted by the field synergy principle.

1.
Chen
,
S.
, and
Doolen
,
G. D.
, 1998, “
Lattice Boltzmann Method for Fluid Flows
,”
Annu. Rev. Fluid Mech.
0066-4189,
30
, pp.
329
364
.
2.
McNamara
,
G.
, and
Zanetti
,
G.
, 1988, “
Use of the Boltzmann Equation to Simulate Lattice-Gas Automata
,
Phys. Rev. Lett.
0031-9007,
61
, pp.
2332
2335
.
3.
Higuera
,
F.
, and
Jimenez
,
J.
, 1989, “
Boltzmann Approach to Lattice Gas Simulations
,”
Europhys. Lett.
0295-5075,
9
, pp.
663
668
.
4.
Higuera
,
F.
,
Succi
,
S.
, and
Benzi
,
R.
, 1989, “
Lattics Gas Dynamics With Enhanced Collisions
,”
Europhys. Lett.
0295-5075,
9
, pp.
345
349
.
5.
Bhatnagar
,
P. L.
,
Gross
,
E. P.
, and
Krook
,
M.
, 1954, “
A Model for Collision Process in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component System
,”
Phys. Rev.
0031-899X,
94
, pp.
511
521
.
6.
Chen
,
H.
,
Chen
,
S.
, and
Matthaeus
,
W. H.
, 1992, “
Recovery of the Navier-Stokes Equation Using a Lattice Boltzmann Method
,”
Phys. Rev. A
1050-2947,
45
, pp.
R5339
R5342
.
7.
Filippova
,
O.
, and
Hanel
,
D.
, 1998, “
Grid Refinement for Lattice-BGK Models
,”
J. Comput. Phys.
0021-9991,
147
, pp.
219
228
.
8.
Mei
,
R.
,
Luo
,
L.-S.
, and
Shyy
,
W.
, 1999, “
An Accurate Curved Boundary Treatment in the Lattice Boltzmann Method
,”
J. Comput. Phys.
0021-9991,
155
, pp.
307
330
.
9.
Guo
,
Z.
,
Zheng
,
C.
, and
Shi
,
B.
, 2002, “
An Extrapolation Method for Boundary Conditions in Lattice Boltzmann Method
,”
Phys. Fluids
1070-6631,
14
, pp.
2007
2010
.
10.
Chen
,
S.
,
Martinez
,
D.
, and
Mei
,
R.
, 1996, “
On Boundary Conditions in Lattice Boltzmann Methods
,”
Phys. Fluids
1070-6631,
8
, pp.
2527
2536
.
11.
Kondoh
,
T.
,
Nagano
,
Y.
, and
Tsuji
,
T.
, 1993, “
Computational Study of Laminar Heat Transfer Downstream of a Backward-Facing Step
,”
Int. J. Heat Mass Transfer
0017-9310,
36
, pp.
577
591
.
12.
Aung
,
W.
, 1983, “
An Experimental Study of Laminar Heat Transfer Downstream of Backstep
,”
J. Heat Transfer
0022-1481,
105
, pp.
823
829
.
13.
Hall
,
E. J.
, and
Pletcher
,
R. H.
, 1985, “
An Application of a Viscous-Inviscid Interaction Procedure to Predict Separated Flows With Heat Transfer
,”
J. Heat Transfer
0022-1481,
107
, pp.
557
563
.
14.
Guo
,
Z. Y.
,
Li
,
D. Y.
, and
Wang
,
B. X.
, 1998, “
A Novel Concept for Convective Heat Transfer Enhancement
,”
Int. J. Heat Mass Transfer
0017-9310,
41
, pp.
2221
2225
.
15.
Wang
,
S.
,
Li
,
Z. X.
, and
Guo
,
Z. Y.
, 1998, “
Novel Concept and Device of Heat Transfer Augmentation
,”
Proceeding of 11th IHTC
,
Korea
, Vol.
5
, pp.
405
408
.
16.
Tao
,
W. Q.
,
He
,
Y. L.
,
Wang
,
Q. W.
,
Qu
,
Z. G.
, and
Song
,
F. Q.
, 2002, “
A Unified Analysis on Enhancing Single Phase Convective Heat Transfer With Field Synergy Principle
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
4871
4879
.
17.
Tao
,
W. Q.
,
Guo
,
Z. Y.
, and
Wang
,
B. X.
, 2002, “
Field Synergy Principle for Enhancing Convective Heat Transfer—Its Extension and Numerical Verifications
,
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
3849
3856
.
18.
Hou
,
S.
,
Zou
,
Q.
,
Chen
,
S.
,
Doolen
,
G. D.
, and
Cogley
,
A. C.
, 1995, “
Simulation of Cavity Flow by the Lattice Boltzmann Method
,”
J. Comput. Phys.
0021-9991,
118
, pp.
329
347
.
19.
Alexander
,
F. J.
,
Chen
,
S.
, and
Sterling
,
J. D.
, 1993, “
Lattice Boltzmann Thermohydrodynamics
,”
Phys. Rev. E
1063-651X,
47
, pp.
R2249
R2252
.
20.
Shan
,
X.
, 1997, “
Solution of Rayleigh-Benard Convection Using a Lattice Boltzmann Method
,
Phys. Rev. E
1063-651X,
55
, pp.
2780
2788
.
21.
He
,
X.
,
Chen
,
S.
, and
Doolen
,
G. D.
, 1998, “
A Novel Thermal Model for the Lattice Boltzmann Method in Incompressible Limit
,
J. Comput. Phys.
0021-9991,
146
, pp.
282
300
.
22.
Peng
,
Y.
,
Shu
,
C.
, and
Chew
,
Y. T.
, 2003, “
Simplified Thermal Lattice Boltzmann Model for Incompressible Thermal Flows
,”
Phys. Rev. E
1063-651X,
68
, p.
026701
.
23.
Zou
,
Q.
, and
He
,
X.
, 1997, “
On Pressure and Velocity Boundary Conditions for the Lattice Boltzmann BGK Model
,”
Phys. Fluids
1070-6631,
9
, pp.
1591
1598
.
24.
Shu
,
C.
,
Peng
,
Y.
, and
Chew
,
Y. T.
, 2002, “
Simulation of Natural Convection in a Square Cavity by Taylor Series Expansion and Least Square-Based Lattice Boltzmann Method
,”
Int. J. Mod. Phys. C
0129-1831,
13
, pp.
1399
1414
.
25.
Armaly
,
B. F.
,
Durst
,
F.
,
Pereira
,
J. C. F.
, and
Schonung
,
B.
, 1983, “
Experimental and Theoretical Investigation of Backward-Facing Step Flow
,”
J. Fluid Mech.
0022-1120,
127
, pp.
473
496
.
26.
He
,
X.
, and
Luo
,
L.-S.
, 1997, “
A Prior Derivation of the Lattice Boltzmann Equation
,”
Phys. Rev. E
1063-651X,
55
, pp.
R6333
R6336
.
You do not currently have access to this content.