The heat transfer characteristics of a workpiece subject to plasma heating and melting are theoretically and systematically studied. Plasma etching, spray deposition, sputtering, cutting and surface treatment, etc., are usually controlled by energy transfer from plasma to workpieces. In this work, the one-dimensional unsteady conduction equation accounting for solid-liquid phase transition with distinct thermal properties in a workpiece is solved. The plasma is composed of a collisionless presheath and sheath on an electrically floating workpiece that partially reflects or secondarily emits ions and electrons. The energy transport from plasma to the surface is kinetically, analytically and exactly calculated from self-consistent velocity distributions of the ions and electrons. The results show that the predicted surface temperature and energy transmission factor agree well with experimental data. The effects of plasma characteristics and thermal parameters of the workpiece on unsteady temperature profiles and thickness of the molten layer in the workpiece are quantitatively provided in this work. Energy released from recombination of the ions and electrons on the surface is found to play the most important role on heating the workpiece. The deviation of surface temperature contributed by recombination energy can be 1000 K.

1.
Chen
,
F. F.
, 1974,
Introduction to Plasma Physics
,
Plenum Press
, New York, Chap. 8.
2.
Bohm
,
D.
, 1949, ”
Minimum Ionic Kinetic Energy for a Stable Sheath
,” in
The Characteristics of Electrical Discharges in Magnetic Fields
,
A.
Guthrie
and
R.
Wakerling
, eds.,
McGraw–Hill
, New York, Chap. 3, pp.
77
86
.
3.
Stangeby
,
P. C.
, 1984, “
Plasma Sheath Transmission Factors for Tokamak Edge Plasmas
,”
Phys. Fluids
0031-9171,
27
, pp.
682
690
.
4.
Benilov
,
M. S.
, and
Marotta
,
A.
, 1995, ”
A Model of the Cathode Region of Atmospheric Pressure Arcs
,”
J. Phys. D
0022-3727,
28
, pp.
1869
1882
.
5.
Costanzo
,
L.
,
Gunn
,
J. P.
,
Loarer
,
T.
,
Colas
,
L.
,
Corre
,
Y.
,
Ghendrih
,
Ph.
,
Grisolia
,
C.
,
Grosman
,
A.
,
Guilhem
,
D.
,
Monier-Garbet
,
P.
,
Reichle
,
R.
,
Roche
,
H.
, and
Vallet
,
J. C.
, 2001, “
Analysis of Energy Flux Deposition and Sheath Transmission Factors during Ergodic Divertor Operation on Tore Supra
,”
J. Nucl. Mater.
0022-3115,
290–293
, pp.
840
844
.
6.
Mändl
,
S.
,
Manova
,
D.
, and
Rauschenbach
,
B.
, 2002, “
Balancing Incident Heat and Ion Flow for Process Optimization in Plasma Based Ion Implantation
,”
J. Phys. D
0022-3727,
35
, pp.
1141
1148
.
7.
Schmitz
,
H.
, and
Riemann
,
K.-U.
, 2002, “
Analysis of the Cathodic Region of Atmospheric Pressure Discharges
,”
J. Phys. D
0022-3727,
35
, pp.
1727
1735
.
8.
Hussla
,
I.
,
Enke
,
K.
,
Grünwald
,
H.
,
Lorenz
,
G.
, and
Stoll
,
H.
, 1987, “
In Situ Silicon-Wafer Temperature Measurements during RF Argon-Ion Plasma Etching Via Fluoroptic Thermometry
,”
J. Phys. D
0022-3727,
20
, pp.
889
896
.
9.
Emmert
,
G. A.
,
Wieland
,
R. M.
,
Mense
,
A. T.
, and
Davidson
,
J. N.
, 1980, ”
Electric Sheath and Presheath in a Collisionless, Finite Ion Temperature Plasma
,”
Phys. Fluids
0031-9171,
23
, pp.
803
812
.
10.
Wei
,
P. S.
, and
Yeh
,
F. B.
, 2000, “
Fluid-Like Transport Variables in a Kinetic, Collisionless Plasma Near a Surface With Ion and Electron Reflection
,”
IEEE Trans. Plasma Sci.
0093-3813,
28
, pp.
1233
1243
.
11.
Yeh
,
F. B.
, and
Wei
,
P. S.
, 2004, “
Plasma Energy Transport to an Electrically Biased Surface
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
4019
4029
.
12.
Visser
,
R. J.
, 1989, “
Determination of the Power and Current Densities in Argon and Oxygen Plasmas by in situ Temperature Measurements
,”
J. Vac. Sci. Technol. A
0734-2101,
7
, pp.
189
194
.
13.
Zhou
,
X.
,
Heberlein
,
J.
, and
Pfender
,
E.
, 1994, “
Theoretical Study of Factors Influencing Arc Erosion of Cathode
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part A
1070-9886,
17
, pp.
107
112
.
14.
Ye
,
M. Y.
,
Masuzaki
,
S.
, and
Shiraishi
,
K.
, 1996, “
Nonlinear Interactions between High Heat Flux Plasma and Electron-Emissive Hot Material Surface
,”
Phys. Plasmas
1070-664X,
3
, pp.
281
292
.
15.
Takamura
,
S.
,
Ye
,
M. Y.
,
Kuwabara
,
T.
, and
Ohno
,
N.
, 1998, “
Heat Flows through Plasma Sheaths
,”
Phys. Plasmas
1070-664X,
5
, pp.
2151
2158
.
16.
Raffray
,
A. R.
, and
Federici
,
G.
, 1997, “
RACLETTE: A Model for Evaluating the Thermal Response of Plasma Facing Components to Slow High Power Plasma Transients. Part I: Theory and Description of Model Capabilities
,”
J. Nucl. Mater.
0022-3115,
244
, pp.
85
100
.
17.
Takaki
,
K.
,
Takahashi
,
A.
, and
Fujiwara
,
T.
, 1998, “
Experimental Study on Heat Flux From an Argon RF Plasma Using Laser Interferometry Method
,”
Jpn. J. Appl. Phys., Part 1
0021-4922
37
, pp.
3514
3520
.
18.
Tsvetkov
,
I. V.
, and
Tanabe
,
T.
, 1999, “
The Influence of Electron Emission on Heat Load to the Plasma Facing Materials under Space Charge Limited Condition With an Oblique Magnetic Field
,”
J. Nucl. Mater.
0022-3115,
266–269
, pp.
714
720
.
19.
Kersten
,
H.
,
Deutsch
,
H.
,
Steffen
,
H.
,
Kroesen
,
G. M. W.
, and
Hippler
,
R.
, 2001, “
The Energy Balance at Substrate Surfaces during Plasma Processing
,”
Vacuum
0042-207X,
63
, pp.
385
431
.
20.
Bachet
,
G.
,
Ch e rigier
,
L.
, and
Doveil
,
F.
, 1995, ”
Ion Velocity Distribution Function Observations in a Multipolar Argon Discharge
,”
Phys. Plasmas
1070-664X,
2
, pp.
1782
1788
.
21.
Goeckner
,
M. J.
,
Goree
,
J.
, and
Sheridan
,
T. E.
, 1992,”
Measurements of Ion Velocity and Density in the Plasma Sheath
,”
Phys. Fluids B
0899-8221,
4
, pp.
1663
1670
.
22.
Stangeby
,
P. C.
, 1986, ”
The Plasma Sheath
,” in
Physics of Plasma Wall Interactions in Controlled Fusion
(
D. E.
Post
and
R.
Behrisch
, eds.),
Proceedings of NATO Advanced Study Institute
, 30 July–10 Aug., 1984,
Val-Morin
, Quebec, Canada,
Plenum
, New York, pp.
41
97
.
23.
Wei
,
P. S.
, and
Yeh
,
F. B.
, 2000, “
Heat Transfer Coefficient in Rapid Solidification of a Liquid Layer on a Substrate
,”
ASME J. Heat Transfer
0022-1481,
122
, pp.
792
800
.
24.
Yeh
,
F. B.
,
Wei
,
P. S.
, and
Chiu
,
S. H.
, 2003, ”
Distinct Property Effects on Rapid Solidification of a Thin Liquid Layer on a Substrate Subject to Self-Consistent Melting
,”
J. Cryst. Growth
0022-0248,
247
, pp.
563
575
.
25.
Masuzaki
,
S.
,
Ohno
,
N.
, and
Takamura
,
S.
, 1995, “
Experimental Study on Plasma Heat Flow to Plasma-Facing Materials
,”
J. Nucl. Mater.
0022-3115,
223
, pp.
286
293
.
26.
Tamulevičius
,
S.
,
Babilius
,
K.
, and
Matiukas
,
A.
, 1995, “
Temperature Conditions During Arc Discharge Plasma Deposition of Titanium Nitride
,”
Surf. Coat. Technol.
0257-8972,
71
, pp.
250
253
.
You do not currently have access to this content.