Traditionally, radiation in participating media is coupled to other modes of heat transfer using an iterative procedure in which the overall energy equation (EE) and the radiative transfer equation (RTE) are solved sequentially and repeatedly until both equations converge. Although this explicit coupling approach is convenient from the point of view of computer code development, it is not necessarily the best approach for stability and convergence. A new numerical procedure is presented in which the EE and RTE are implicitly coupled and solved simultaneously, rather than as segregated equations. Depending on the average optical thickness of the medium, it is found that the coupled solution approach results in convergence that is between 2–100 times faster than the segregated solution approach. Several examples in one- and two-dimensional media, both gray and nongray, are presented to corroborate this claim.

1.
Modest
,
M. F.
, 2003,
Radiative Heat Transfer
, Second Edition,
Academic Press
, NY.
2.
Whitaker
,
S.
, 1983,
Fundamental Principles of Heat Transfer
,
Krieger
, Melbourne, FL.
3.
Modest
,
M. F.
, 1990, “
The Improved Differential Approximation for Radiative Heat Transfer in Multi-Dimensional Media
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
819
821
.
4.
Fiveland
,
W.
, and
Jamaluddin
,
A.
, 1991, “
Three-dimensional Spectral Radiative Heat Transfer Solutions by the Discrete Ordinates Method
,”
J. Thermophys. Heat Transfer
0887-8722,
5
(
3
), pp.
335
339
.
5.
Chai
,
J. C.
,
Lee
,
H. S.
, and
Patankar
,
S. V.
, 1994, “
Finite-Volume Method for Radiative Heat Transfer
,”
J. Thermophys. Heat Transfer
0887-8722,
8
, pp.
419
425
.
6.
Yuen
,
W.
, and
Takara
,
E.
, 1994, “
Development of a general zonal method for analysis of radiative transfer in absorbing and anisotropically scattering media
,”
Numer. Heat Transfer, Part B
1040-7790,
25
, pp.
75
96
.
7.
Shen
,
Z.
,
Smith
,
T.
, and
Hix
,
P.
, 1983, “
Linearization of Thermal Radiation Terms for Improved Convergence by Use of the Zone Method
,”
Numer. Heat Transfer
0149-5720,
6
, pp.
377
382
.
8.
Smith
,
T.
and
Severin
,
S.
, 1985, “
Development of the Finite Analytic with Radiation Method
,”
ASME J. Heat Transfer
0022-1481,
107
, pp.
735
737
.
9.
Cheney
,
W.
, and
Kincaid
,
W.
, 1985,
Numerical Mathematics and Computing
, Second Edition,
Brooks-Cole
, Belmont, MA.
10.
Ferziger
,
J.
, and
Peric
,
M.
, 1999,
Computational Methods for Fluid Dynamics
, Second Edition,
Springer-Verlag
, Berlin.
11.
Press
,
W.
,
Teukolsky
,
S.
,
Vetterling
,
W.
, and
Flannery
,
B.
, 1996,
Numerical Recipes in Fortran 90
, Second Edition,
Cambridge University Press
, Cambridge, England.
12.
Hartmann
,
J. M.
,
DeLeon
,
R.
, and
Taine
,
J.
, 1984, “
Line-by-line and Narrow Band Statistical Model Calculations for H2O
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
32
(
2
), pp.
119
128
.
13.
Elsasser
,
W. M.
, 1942, “
Heat Transfer by Infrared Radiation in the Atmosphere
,”
Harvard Meterol
.,
6
, pp.
107
129
.
14.
Ludwig
,
C. B.
,
Malkmus
,
W.
,
Reardon
,
J. E.
, and
Thompson
,
J. A.
, 1973,
Handbook of Infrared Radiation from Combustion Gases
,
NASA SP-3080, Scientific and Technical Information Office
, Washington, DC.
15.
Malkmus
,
W.
, 1967, “
Random Lorentz Band Model with Exponentially Tailed s-1 Line Intensity Distribution Function
,”
J. Opt. Soc. Am.
0030-3941,
57
(
3
), p.
323
.
16.
Edwards
,
D. K.
, 1976, “
Molecular Gas Band Radiation
,”
Adv. Heat Transfer
0065-2717,
12
, pp.
115
193
.
17.
Modest
,
M. F.
, and
Sikka
,
K.
, 1992, “
The Application of the Stepwise-Gray P-1 Approximation to Molecular Gas-Particulate Mixtures
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
48
(
2
), pp.
159
162
.
18.
Modest
,
M. F.
, 1991, “
The Weighted Sum of Gray Gases Model for Arbitrary Solution Methods in Radiative Heat Transfer
,”
ASME J. Heat Transfer
0022-1481,
113
(
3
), p.
650
.
19.
Denison
,
M. K.
, and
Webb
,
B. W.
, 1994, “
k-Distributions and Weighted-Sum-of-Gray-Gases: A Hybrid Model
,”
Tenth International Heat Transfer Conference, Taylor & Francis, NY
, pp.
19
24
.
20.
Lacis
,
A. A.
, and
Oinas
,
V.
, 1991, “
A Description of the Correlated k Distribution Method for Modeling Nongray Gaseous Absorption, Thermal Emission, and Multiple Scattering in Vertically Inhomogeneous Atmospheres
,”
J. Geophys. Res.
0148-0227,
96
(
D5
), pp.
9027
9063
.
21.
Lee
,
P. Y. C.
,
Hollands
,
K. G. T.
, and
Raithby
,
G. D.
, 1996, “
Reordering the Absorption Coefficient Within the Wide Band for Predicting Gaseous Radiant Exchange
,”
ASME J. Heat Transfer
0022-1481
118
(
2
), pp.
394
403
.
22.
Goody
,
R.
,
West
,
R.
,
Chen
,
L.
, and
Crisp
,
D.
, 1989, “
The Correlated-k Method for Radiation Calculations in Nonhomogeneous Atmospheres
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
42
(
6
), pp.
539
560
.
23.
Tang
,
K. C.
, and
Brewster
,
M. Q.
, 1994, “
K-Distribution Analysis of Gas Radiation With Nongray, Emitting, Absorbing, and Anisotropic Scattering Particles
,”
ASME J. Heat Transfer
0022-1481,
116
, pp.
980
989
.
24.
Modest
,
M. F.
, and
Zhang
,
H.
, 2002, “
The Full-Spectrum Correlated-k Distribution for Thermal Radiation From Molecular Gas-Particulate Mixtures
,”
ASME J. Heat Transfer
0022-1481,
124
(
1
), pp.
30
38
.
25.
Siegel
,
R.
and
Howell
,
J.
, 2001,
Thermal Radiation Heat Transfer
, Fourth Edition,
Taylor and Francis-Hemisphere
, NY.
You do not currently have access to this content.