The application of Reynolds analogy 2St/cf1 for turbine flows is critically evaluated using experimental data collected in a low-speed wind tunnel. Independent measurements of St and cf over a wide variety of test conditions permit assessments of the variation of the Reynolds analogy factor (i.e., 2St/cf) with Reynolds number, freestream pressure gradient, surface roughness, and freestream turbulence. While the factor is fairly independent of Reynolds number, it increases with positive (adverse) pressure gradient and decreases with negative (favorable) pressure gradient. This variation can be traced directly to the governing equations for momentum and energy which dictate a more direct influence of pressure gradient on wall shear than on energy (heat) transfer. Surface roughness introduces a large pressure drag component to the net skin friction measurement without a corresponding mechanism for a comparable increase in heat transfer. Accordingly, the Reynolds analogy factor decreases dramatically with surface roughness (by as much as 50% as roughness elements become more prominent). Freestream turbulence has the opposite effect of increasing heat transfer more than skin friction, thus the Reynolds analogy factor increases with turbulence level (by up to 35% at a level of 11% freestream turbulence). Physical mechanisms responsible for the observed variations are offered in each case. Finally, synergies resulting from the combinations of pressure gradient and freestream turbulence with surface roughness are evaluated. With this added insight, the Reynolds analogy remains a useful tool for qualitative assessments of complex turbine flows where both heat load management and aerodynamic efficiency are critical design parameters.

1.
Reynolds
,
O.
,
1874
, “
On the Extent and Action of the Heating Surface for Steam Boilers
,”
Manchester Lit. Phil. Soc.
,
14
, pp.
7
12
.
2.
Abuaf
,
N.
,
Bunker
,
R. S.
, and
Lee
,
C. P.
,
1998
, “
Effects of Surface Roughness on Heat Transfer and Aerodynamic Performance of Turbine Airfoils
,”
ASME J. Turbomach.
,
120
(
3
), pp.
522
529
.
3.
Belnap
,
B. J.
,
vanRij
,
J. A.
, and
Ligrani
,
P. M.
,
2002
, “
A Reynolds Analogy for Real Component Surface Roughness
,”
Int. J. Heat Mass Transfer
,
45
, pp.
3089
3099
.
4.
Bons
,
J. P.
,
2002
, “
St and cf Augmentation for Real Turbine Roughness With Elevated Freestream Turbulence
,”
ASME J. Turbomach.
,
124
(
4
), pp.
632
644
.
5.
Bons, J. P., and McClain, S., 2003, “The Effect of Real Turbine Roughness and Pressure Gradient on Heat Transfer,” presented at the June 2003 IGTI in Atlanta, GA, No. GT2003-38738.
6.
Bons
,
J. P.
,
Taylor
,
R.
,
McClain
,
S.
, and
Rivir
,
R. B.
,
2001
, “
The Many Faces of Turbine Surface Roughness
,”
ASME J. Turbomach.
,
123
, pp.
739
748
.
7.
Bogard
,
D. G.
,
Schmidt
,
D. L.
, and
Tabbita
,
M.
,
1998
, “
Characterization and Laboratory Simulation of Turbine Airfoil Surface Roughness and Associated Heat Transfer
,”
ASME J. Turbomach.
,
120
(
2
), pp.
337
342
.
8.
Barlow, D. N., and Kim, Y. W., 1995, “Effect of Surface Roughness on Local Heat Transfer and Film Cooling Effectiveness,” presented at the June, 1995 ASME International Gas Turbine Exposition in Houston, Texas, ASME Paper No. 95-GT-14.
9.
Antonia
,
R. A.
, and
Luxton
,
R. E.
,
1971
, “
The Response of a Turbulent Boundary Layer to a Step Change in Surface Roughness. Part 1: Smooth to Rough
,”
J. Fluid Mech.
,
48
, pp.
721
726
.
10.
Taylor, R. P., and Chakroun, W. M., 1992, “Heat Transfer in the Turbulent Boundary Layer With a Short Strip of Surface Roughness,” presented at the 30th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 6–9 January, 1992, AIAA Pap. No. 92-0249.
11.
Taylor
,
R. P.
,
1990
, “
Surface Roughness Measurements on Gas Turbine Blades
,”
ASME J. Turbomach.
,
112
(
1
), pp.
175
180
.
12.
Mills, A. F., 1992, Heat Transfer, 1st ed., Irwin, Illinois.
13.
Schultz, D. L., and Jones, T. V., 1973, “Heat-Transfer Measurements in Short-Duration Hypersonic Facilities,” Advisory Group for Aerospace Research and Development, No. 165, NATO.
14.
Halstead
,
D. E.
,
Wisler
,
D. C.
,
Okiishi
,
T. H.
,
Walker
,
G. J.
,
Hodson
,
H. P.
, and
Shin
,
H.-W.
,
1997
, “
Boundary Layer Development in Axial Compressors and Turbines: Part 1 or 4—Composite Picture
,”
ASME J. Turbomach.
,
119
, pp.
114
127
.
15.
Matsunuma, T., Abe, H., Tsutsui, Y., and Murata, K., 1998, “Characteristics of an Annular Turbine Cascade at Low Reynolds Numbers,” presented at IGTI 1998 in Stockholm, Sweden, June 1998, Paper No. 98-GT-518.
16.
Blasius
,
H.
,
1908
, “
Grenzschichten in Flussikeiten mit Kleiner Reibung
,”
Z. Angew. Math. Phys.
,
56
, pp.
1
37
(English translation in NACA Technical Memo. 1256).
17.
Pohlhausen
,
E.
,
1921
, “
Der Warmeaustausch Swischen Festern Korpen und Flussigdeiten mit Kleiner Reibun und Kleiner Warmeleitung
,”
Z. Angew. Math. Mech.
,
1
, pp.
115
121
.
18.
Colburn
,
A. P.
,
1933
, “
A Method of Correlating Forced Convetion Heat Transfer Data and a Comparison With Fluid Friction Data
,”
AIChE J.
,
29
, pp.
174
210
.
19.
Chilton
,
T. H.
, and
Colburn
,
A. P.
,
1934
,
Ind. Eng. Chem.
,
26
, pp.
1183
1183
.
20.
White, F. M., 1991, Viscous Fluid Flow, 2nd ed., McGraw-Hill, New York.
21.
Kader
,
B. A.
, and
Yaglom
,
A. M.
,
1972
, “
Heat and Mass Transfer Laws for Fully Turbulent Wall Flows
,”
Int. J. Heat Mass Transfer
,
15
, pp.
2329
2351
.
22.
Incropera, F. P., and DeWitt, D. P., 1985, Fundamentals of Heat and Mass Transfer, 2nd ed., Wiley, New York.
23.
So
,
R. M. C.
,
1994
, “
Pressure Gradient Effects on Reynolds Analogy for Constant Property Equilibrium Turbulent Boundary Layers
,”
Int. J. Heat Mass Transfer
,
37
, pp.
27
41
.
24.
Mellor
,
G. L.
, and
Gibson
,
D. M.
,
1966
, “
Equilibrium Turbulent Boundary Layers
,”
J. Fluid Mech.
,
24
, pp.
225
253
.
25.
Back
,
L. H.
, and
Cuffel
,
R. F.
,
1971
, “
Turbulent Boundary Layer and Heat Transfer Measurements Along a Convergent-Divergent Nozzle
,”
ASME J. Heat Transfer
,
93
, pp.
397
407
.
26.
Back
,
L. H.
, and
Seban
,
R. A.
,
1965
, “
On Constant Property Turbulent Boundary Layers With Variable Temperature or Heat Flow at the Wall
,”
ASME J. Heat Transfer
,
87
(
1
), pp.
151
156
.
27.
Dorney, D. J., Ashpis, D. E., Halstead, D. E., and Wisler, D. C., 1999, “Study of Boundary Layer Development in a Two-Stage Low-Pressure Turbine,” presented at the 37th AIAA Aerospace Sciences Meeting and Exhibit, 11–14 Jan., 1999, Reno, NV, Paper No. AIAA 99-0742.
28.
Sharma
,
O. P.
,
Wells
,
R. A.
,
Schlinker
,
R. H.
, and
Bailey
,
D. A.
,
1982
, “
Boundary Layer Development on Turbine Airfoil Suction Surfaces
,”
ASME J. Eng. Power
,
104
, pp.
698
706
.
29.
Mayle
,
R. E.
,
1991
, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
,
113
, pp.
509
537
.
30.
Moretti
,
P. M.
, and
Kays
,
W. M.
,
1965
, “
Heat Transfer to a Turbulent Boundary Layer With Varying Free-Stream Velocity and Varying Surface Temperature—An Experimental Study
,”
Int. J. Heat Mass Transfer
,
8
, pp.
1187
1201
.
31.
Schlichting, H., 1936, “Experimental Investigation of the Problem of Surface Roughness,” NACA TM-832.
32.
Nikuradse, J., 1933, “Laws for Flows in Rough Pipes,” VDI-Forchungsheft 361, Series B, Vol. 4. (English Translation NACA TM 1292, 1950).
33.
Coleman
,
H. W.
,
Hodge
,
B. K.
, and
Taylor
,
R. P.
,
1984
, “
A Re-Evaluation of Schlichting’s Surface Roughness Experiment
,”
ASME J. Fluids Eng.
,
106
, pp.
60
65
.
34.
Sigal
,
A.
, and
Danberg
,
J.
,
1990
, “
New Correlation of Roughness Density Effect on the Turbulent Boundary Layer
,”
AIAA J.
,
28
(
3
), pp.
554
556
.
35.
Forster
,
V. T.
,
1967
, “
Performance Loss of Modern Steam-Turbine Plant Due to Surface Roughness
,”
Proc. Inst. Mech. Engrs., 1966-676
,
181
(
1
), pp.
391
405
.
36.
Bammert
,
K.
, and
Sanstede
,
H.
,
1976
, “
Influences of Manufacturing Tolerances and Surface Roughness of Blades on the Performance of Turbines
,”
ASME J. Eng. Power
,
98
, pp.
29
36
.
37.
Koch
,
C. C.
, and
Smith
, Jr.,
L. H.
,
1976
, “
Loss Sources and Magnitudes in Axial-Flow Compressors
,”
ASME J. Eng. Power
,
98
, pp.
411
424
.
38.
Schlichting, H., 1979, Boundary Layer Theory, 7th ed., McGraw-Hill, New York.
39.
Acharya
,
M.
,
Bornstein
,
J.
, and
Escudier
,
M.
,
1986
, “
Turbulent Boundary Layers on Rough Surfaces
,”
Exp. Fluids
,
4
, pp.
33
47
.
40.
Tarada, F., and Suzuki, M., 1993, “External Heat Transfer Enhancement to Turbine Blading Due to Surface Roughness,” presented at ASME IGTI in Cincinnati OH, May 1993, ASME Paper 93-GT-74.
41.
Goebel, S. G., Abuaf, N., Lovett, J. A., and Lee, C.-P., 1993, “Measurements of Combustor Velocity and Turbulence Profiles,” ASME Paper No. 93-GT-228.
42.
Barringer, M. D., Richard, O. T., Walter, J. P., Stitzel, S. M., and Thole, K. A., 2001, “Flow Field Simulations of a Gas Turbine Combustor,” ASME Paper No. 2001-GT-0170.
43.
Matsunuma, T., Abe, H., and Tsutsui, Y., 1999, “Influence of Turbulence Intensity on Annular Turbine Stator Aerodynamics at Low Reynolds Numbers,” presented at IGTI 1999 in Indianapolis, Indiana, June 1999, Paper No. 99-GT-151.
44.
Stieger, R. D., and Hodson, H. P., 2003, “The Transition Mechanism of Highly-Loaded LP Turbine Blades,” presented at the 2003 IGTI in Atlanta, GA, ASME Paper No. GT2003-38304.
45.
Blair
,
M. F.
,
1983
, “
Influence of Free-Stream Turbulence on Turbulent Boundary Layer Heat Transfer and Mean Profile Development, Part II—Analysis of Results
,”
ASME J. Heat Transfer
,
105
, pp.
41
47
.
46.
Pedisius
,
A. A.
,
Kazimekas
,
V. A.
, and
Slanciauskas
,
A. A.
,
1979
, “
Heat Transfer From a Plate to a High-Turbulence Air Flow
,”
Soviet Research
,
11
(
5
), pp.
125
134
.
47.
Maciejewski
,
P. K.
, and
Moffat
,
R. J.
,
1992
, “
Heat Transfer With Very High Free-Stream Turbulence: Part 1—Experimental Data
,”
ASME J. Heat Transfer
,
114
, pp.
827
833
.
48.
Thole
,
K. A.
, and
Bogard
,
D. G.
,
1995
, “
Enhanced Heat Transfer and Shear Stress Due to High Free-Stream Turbulence
,”
ASME J. Turbomach.
,
117
, pp.
418
424
.
49.
Simonich
,
J. C.
, and
Bradshaw
,
P.
,
1978
, “
Effect of Free-Stream Turbulence on Heat Transfer Through a Turbulent Boundary Layer
,”
ASME J. Heat Transfer
,
100
, pp.
671
677
.
50.
Hopkins
,
E.
, and
Inouye
,
M.
,
1971
, “
An Evaluation of Theories for Predicting Turbulent Skin Friction and Heat Transfer on Flat Plates at Supersonic and Hypersonic Mach Numbers
,”
AIAA J.
,
9
(
6
), pp.
993
1003
.
51.
Smits
,
A.
, and
Muck
,
K.
,
1987
, “
Experimental Study of Three Shock-Wave/Turbulent Boundary Layer Interactions
,”
J. Fluid Mech.
,
182
, pp.
291
314
.
You do not currently have access to this content.