This paper presents a calculation methodology to predict the peaks in heat transfer coefficient at near zero equilibrium quality observed in forced convective boiling in vertical conduits. The occurrence of such peaks is typical of low latent heat, low thermal conductivity systems (such as refrigerants and hydrocarbons), and of systems in which the vapor volume formation rate for a given heat flux is large (low-pressure water). The methodology is based on a model that postulates that the mechanism behind the heat transfer coefficient enhancement is the existence of thermodynamic nonequilibrium slug flow, i.e., a type of slug flow in which rapid bubble growth in subcooled boiling leads to the formation of Taylor bubbles separated by slugs of subcooled liquid. Results are compared with experimental data for forced convective boiling of pure hydrocarbons and show considerable improvement over existing correlations.

1.
Wadekar, V. V., and Kenning, D. B. R., 1990, “Flow Boiling Heat Transfer in Vertical Slug and Churn Flow Region,” Proc. 9th International Heat Transfer Conference, Vol. 3, Hemisphere, pp. 449–454.
2.
Wadekar
,
V. V.
,
1991
, “
Vertical Slug Flow Heat Transfer With Nucleate Boiling
,”
ASME Phase Change Heat Transfer
,
159
,
157
161
.
3.
Collier, J. G., and Thome, J. R., 1994, Convective Boiling and Condensation, 3rd ed., Oxford University Press, Oxford, UK.
4.
Hewitt, G. F., 2000, “Challenges in Boiling Research,” Keynote Lecture, Boiling 2000: Phenomena and Emerging Applications, United Engineering Foundation, Anchorage, AK.
5.
Hewitt
,
G. F.
,
2001
, “
Deviations From Classical Behavior in Vertical Channel Convective Boiling
,”
Multiphase Sci. Technol.
,
13
(
3&4
), pp.
341
371
.
6.
Kandlbinder, T. K., 1997, “Experimental Investigation of Forced Convective Boiling of Hydrocarbons and Hydrocarbon Mixtures,” Ph.D. thesis, Imperial College, University of London.
7.
Urso, M. E., Wadekar, V. V., and Hewitt, G. F., 2002, “Flow Boiling at Low Mass Flux,” Proc. 12th International Heat Transfer Conference, Elsevier Science, pp. 803–808.
8.
Jeglic
,
F. A.
, and
Grace
,
T. M.
,
1965
, “
Onset of Flow Oscillations in Forced Flow Subcooled Boiling,” NASA Technical Note TN D-2821, Lewis Research Center, Cleveland, Ohio.
9.
Ishii, M., 1982, “Wave Phenomena and Two-Phase Flow Instabilities,” Handbook of Multiphase Systems, edited by G. Hetsroni, Hemisphere Publishing Co, Washington DC.
10.
Cheah, L. W., “Forced Convective Evaporation at Subatmospheric Pressure,” Ph.D. thesis, Imperial College, University of London.
11.
Thome, J. R., 1995, “Flow Boiling in Horizontal Tubes: A Critical Assessment of Current Methodologies,” Proc. 1st Symposium on Two-Phase Flow Modeling and Experimentation Conference, Vol. 1, Edizioni, Rome, pp. 41–52.
12.
Saha, P., and Zuber, N., 1974, “Point of Net Vapor Generation and Vapor Void Fraction in Subcooled Boiling,” Proc. 5th International Heat Transfer Conference, Paper B4.7.
13.
Chen
,
J. C.
,
1966
, “
A Correlation for Boiling Heat Transfer to Saturated Fluids in Convective Flow
,”
Ind. Eng. Chem. Process Des. Dev.
,
5
(
3
), pp.
322
329
.
14.
Shah
,
M. M.
,
1982
, “
Chart Correlation for Saturated Boiling Heat Transfer: Equations and Further Study
,”
ASHRAE Trans.
,
88
(
1
), pp.
185
196
.
15.
Kandlikar
,
S.
,
1990
, “
A General Correlation for Saturated Two-Phase Flow Boiling Heat Transfer Inside Horizontal and Vertical Tubes
,”
ASME J. Heat Transfer
,
112
, pp.
219
228
.
16.
Steiner
,
D.
, and
Taborek
,
J.
,
1992
, “
Flow Boiling Heat Transfer in Vertical Tubes Correlated by an Asymptotic Model
,”
Heat Transfer Eng.
,
13
(
2
), pp.
43
69
.
17.
Fernandes
,
R. C.
,
Semiat
,
R.
, and
Dukler
,
A. E.
,
1983
, “
Hydrodynamic Model for Gas-Liquid Slug Flow in Vertical Tubes
,”
AIChE J.
,
29
(
6
), pp.
981
989
.
18.
Orell
,
A.
, and
Rembrand
,
R.
,
1986
, “
A Model for Gas-Liquid Slug Flow in a Vertical Tube
,”
Ind. Eng. Chem. Fundam.
,
25
, pp.
196
206
.
19.
Sylvester
,
N. D.
,
1987
, “
A Mechanistic Model for Two-Phase Vertical Slug Flow in Pipes
,”
J. Energy Resour. Technol.
,
109
, pp.
206
213
.
20.
De Cachard
,
F.
, and
Delhaye
,
J. M.
,
1996
, “
A Slug-Churn Flow Model for Small-Diameter Airlift Pumps
,”
Int. J. Multiphase Flow
,
22
(
4
), pp.
627
649
.
21.
Nicklin
,
D. J.
,
Wilkes
,
J. O.
, and
Davidson
,
J. F.
,
1962
, “
Two-Phase Flow in Vertical Tubes
,”
Trans. Inst. Chem. Eng.
,
40
, pp.
61
68
.
22.
Wallis, G. B., 1969, One-Dimensional Two-Phase Flow, McGraw–Hill, New York.
23.
Jayanti
,
S.
, and
Hewitt
,
G. F.
,
1992
, “
Prediction of the Slug-to-Churn Transition in Vertical Two-Phase Flow
,”
Int. J. Multiphase Flow
,
18
(
6
), pp.
847
860
.
24.
Costigan, G., 1997, “Flow Pattern Transitions in Vertical Gas-Liquid Flows,” D.Phil. thesis, Oxford University.
25.
Taitel
,
Y.
,
Barnea
,
D.
, and
Dukler
,
A. E.
,
1980
, “
Modeling Flow Pattern Transition for Steady Upward Gas-Liquid Flow in Vertical Tubes
,”
AIChE J.
,
26
, pp.
345
354
.
26.
Barnea
,
D.
, and
Yacoub
,
N.
,
1983
, “
Heat Transfer in Vertical Upwards Gas-Liquid Slug Flow
,”
Int. J. Heat Mass Transfer
,
26
(
9
), pp.
1365
1376
.
27.
Butterworth, G., and Shock, R. A. W., 1982, “Flow Boiling,” Proc. 7th International Heat Transfer Conference, Vol. 1, McGraw-Hill, pp. 11–30.
28.
Forster
,
H. K.
, and
Zuber
,
N.
,
1955
, “
Dynamics of Vapor Bubbles and Boiling Heat Transfer
,”
AIChE J.
,
1
(
4
), pp.
531
535
.
29.
Chun
,
K. R.
, and
Seban
,
R. A.
,
1971
, “
Heat Transfer to Evaporating Liquid Films
,”
ASME J. Heat Transfer
,
93
, pp.
391
396
.
30.
Chexal
,
B.
,
1991
, “
The Chexal-Lellouche Void Fraction Correlation for Generalized Applications,” Electric Power Research Institute Report (EPRI) NSAC/139.
31.
Levy, S., 1999, Two-Phase Flow in Complex Systems, Wiley Interscience, NY.
32.
Aounallah
,
Y.
, and
Kenning
,
D. B. R.
,
1987
, “
Nucleate Boiling and the Chen Correlation for Flow Boiling Heat Transfer
,”
Exp. Heat Transfer
,
1
, pp.
87
92
.
33.
Webb
,
R. L.
,
2003
, “
Commentary on Correlations for Convective Vaporization in Tubes
,”
ASME J. Heat Transfer
,
125
, pp.
184
185
.
You do not currently have access to this content.