The thickness and curvature profiles in the contact line region of a moving evaporating thin liquid film of pentane on a quartz substrate were measured for the thickness region, δ<2.5 μm. The critical region, δ<0.1 μm, was emphasized. The profiles were obtained using image-analyzing interferometry and an improved data analysis procedure. The precursor adsorbed film, the thickness, the curvature, and interfacial slope (variation of the local “apparent contact angle”) profiles were consistent with previous models based on interfacial concepts. Isothermal equilibrium conditions were used to verify the accuracy of the procedures and to evaluate the retarded dispersion constant in situ. The profiles give fundamental insight into the phenomena of phase change, pressure gradient, fluid flow, spreading, shear stress, and the physics of interfacial phenomena in the contact line region. The experimental results demonstrate explicitly, for the first time with microscopic detail, that the disjoining pressure controls fluid flow within an evaporating completely wetting thin curved film.

1.
Derjaguin, B. V., and Zorin, A. M., 1957, “Optical Study of the Adsorption and Surface Condensation of Vapors in the Vicinity of Saturation on a Smooth Surface,” Proc. of 2nd Int. Congr. Surface Activity (London) 2, Butterworths Scientific Publications Ltd., London, England, pp. 145–152.
2.
Derjaguin
,
B. V.
, and
Shcherbakov
,
L. M.
,
1961
, “
Effect of Surface Forces on Phase Equilibria of Polymolecular Layers and Contact Angles
,”
Colloid J. USSR
,
23
, pp.
33
43
.
3.
Derjaguin
,
B. V.
, and
Churaev
,
N. V.
,
1976
, “
The Definition of Disjoining Pressure and Its Importance in the Equilibrium and Flow of Thin Films
,”
Colloid J. USSR
,
38
, pp.
438
448
.
4.
Derjaguin
,
B. V.
,
Nerpin
,
S. V.
, and
Churaev
,
N. V.
,
1965
, “
Effect of Film Transfer Upon Evaporation of Liquids From Capillaries
,”
Bull Rilem
,
29
, pp.
93
98
.
5.
Blake
,
T. D.
,
1975
, “
Investigation of Equilibrium Wetting Films of n-Alkanes on α-Alumina
,”
J. Chem. Soc., Faraday Trans. 1
,
71
, pp.
192
208
.
6.
Potash
, Jr.,
M.
, and
Wayner
, Jr.,
P. C.
,
1972
, “
Evaporation From a Two-Dimensional Extended Meniscus
,”
Int. J. Heat Mass Transfer
,
15
, pp.
1851
1863
.
7.
Wayner
, Jr.,
P. C.
,
Kao
,
Y. K.
, and
LaCroix
,
L. V.
,
1976
, “
The Interline Heat-Transfer Coefficient of an Evaporating Wetting Film
,”
Int. J. Heat Mass Transfer
,
19
, pp.
487
492
.
8.
Wayner
, Jr.,
P. C.
,
1991
, “
The Effect of Interfacial Mass Transport on Flow in Thin Liquid Films
,”
Colloids Surf.
,
52
, pp.
71
84
.
9.
Moosman
,
S.
, and
Homsy
,
S. M.
,
1980
, “
Evaporating Menisci of Wetting Fluids
,”
J. Colloid Interface Sci.
,
73
, pp.
212
223
.
10.
DasGupta
,
S.
,
Plawsky
,
J. L.
, and
Wayner
, Jr.,
P. C.
,
1995
, “
Interfacial Force Field Characterization in a Constrained Vapor Bubble Thermosyphon
,”
AIChE J.
,
41
, pp.
2140
2149
.
11.
Wayner
, Jr.,
P. C.
,
1994
, “
Mechanical and Thermal Effects in the Forced Spreading of a Liquid Film With a Finite Contact Angle
,”
Colloids Surf., A
,
89
, pp.
89
95
.
12.
Wayner
, Jr.,
P. C.
,
2002
, “
Nucleation, Growth and Surface Movement of a Condensing Sessile Droplet
,”
Colloids Surf., A
,
206
, pp.
157
165
.
13.
Holm
,
F. W.
, and
Goplen
,
S. P.
,
1979
, “
Heat Transfer in the Meniscus Thin Film Region
,”
ASME J. Heat Transfer
,
101
, pp.
543
547
.
14.
Dhir
,
V. K.
,
2001
, “
Numerical Simulations of Pool-Boiling Heat Transfer
,”
AIChE J.
,
47
, pp.
813
835
.
15.
Renk
,
F. J.
, and
Wayner
, Jr.,
P. C.
,
1979a
, “
An Evaporating Ethanol Meniscus, Part I: Experimental Studies
,”
ASME J. Heat Transfer
,
101
, pp.
55
58
.
16.
Renk
,
F. J.
, and
Wayner
, Jr.,
P. C.
,
1979b
, “
An Evaporating Ethanol Meniscus, Part II: Analytical Studies
,”
ASME J. Heat Transfer
,
101
, pp.
59
62
.
17.
DasGupta
,
S.
,
Kim
,
I. Y.
, and
Wayner
, Jr.,
P. C.
,
1994
, “
Use of the Kelvin-Clapeyron Equation to Model an Evaporating Curved Microfilm
,”
ASME J. Heat Transfer
,
116
, pp.
1007
1015
.
18.
Stephan
,
P.
, and
Busse
,
C. A.
,
1992
, “
Analysis of the Heat Transfer Coefficient of Grooved Heat Pipe Evaporator Walls
,”
Int. J. Heat Mass Transfer
,
35
, pp.
383
391
.
19.
Swanson
,
L. W.
, and
Peterson
,
G. P.
,
1995
, “
The Interfacial Thermodynamics of Micro Heat Pipes
,”
ASME J. Heat Transfer
,
115
, pp.
195
201
.
20.
Morris
,
S. J. S.
,
2001
, “
Contact Angles for Evaporating Liquids Predicted and Compared With Existing Experiments
,”
J. Fluid Mech.
,
432
, pp.
1
30
.
21.
Bankoff
,
S. G.
,
1990
, “
Dynamics and Stability of Thin Heated Liquid Films
,”
ASME J. Heat Transfer
,
112
, pp.
538
546
.
22.
Ajaev
,
V. S.
, and
Homsy
,
G. M.
,
2001
, “
Steady Vapor Bubbles in Rectangular Microchannels
,”
J. Colloid Interface Sci.
,
240
, pp.
259
271
.
23.
Anderson
,
D. M.
, and
Davis
,
S. H.
,
1995
, “
The Spreading of Volatile Liquid Droplets on Heated Surfaces
,”
Phys. Fluids
,
7
, pp.
248
265
.
24.
Shanahan
,
M. E. R.
,
2001
, “
Condensation Transport in Dynamic Wetting
,”
Langmuir
,
17
, pp.
3997
4002
.
25.
Zheng
,
L.
,
Wang
,
Y.-X.
,
Plawsky
,
J. L.
, and
Wayner
, Jr.,
P. C.
,
2002
, “
Effect of Curvature, Contact Angle, and Interfacial Subcooling on Contact Line Spreading in a Microdrop in Dropwise Condensation
,”
Langmuir
,
18
, pp.
5170
5177
.
26.
Gokhale
,
S. J.
,
Plawsky
,
J. L.
, and
Wayner
, Jr.,
P. C.
,
2003
, “
Experimental Investigation of Contact Angle, Curvature and Contact Line Motion in Dropwise Condensation and Evaporation
,”
J. Colloid Interface Sci.
,
259
, pp.
354
366
.
27.
Gokhale
,
S. J.
,
Plawsky
,
J. L.
, and
Wayner
, Jr.,
P. C.
,
2003
, “
Effect of Interfacial Phenomena on Dewetting in Dropwise Condensation
,”
Adv. Colloid Interface Sci.
,
104
, pp.
175
190
.
28.
Ehrhard
,
P.
, and
Davis
,
S. H.
,
1991
, “
Nonisothermal Spreading of Liquid Drops on Horizontal Plates
,”
J. Fluid Mech.
,
229
, pp.
365
388
.
29.
Burelbach
,
J. P.
,
Bankoff
,
S. G.
, and
Davis
,
S. H.
,
1990
, “
Steady Thermocapillary Flows of Thin Liquid Layers, II. Experiments
,”
Phys. Fluids A
,
2
, pp.
322
333
.
30.
Sharma
,
A.
,
1998
, “
Equilibrium and Dynamics of Evaporating or Condensing Thin Fluid Domains: Thin Film Stability and Heterogeneous Nucleation
,”
Langmuir
,
14
, pp.
4915
4928
.
31.
Karthikeyan
,
M.
,
Huang
,
J.
,
Plawsky
,
J. L.
, and
Wayner
, Jr.,
P. C.
,
1998
, “
Experimental Study and Modeling of the Intermediate Section of the Nonisothermal Constrained Vapor Bubble
,”
ASME J. Heat Transfer
,
120
, pp.
166
173
.
32.
Zheng
,
L.
,
Plawsky
,
J. L.
,
Wayner
, Jr.,
P. C.
, and
DasGupta
,
S.
,
2004
, “
Stability and Oscillations in an Evaporating Corner Meniscus
,”
ASME J. Heat Transfer
,
126
, pp.
169
178
.
33.
Zheng
,
L.
,
Wang
,
Y.-X.
,
Plawsky
,
J. L.
, and
Wayner
, Jr.,
P. C.
,
2002
, “
Accuracy of Measurements of Curvature and Apparent Contact Angle in a Constrained Vapor Bubble Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
45
, pp.
2021
2030
.
34.
Gokhale
,
S. J.
,
Plawsky
,
J. L.
,
Wayner
, Jr.,
P. C.
, and
DasGupta
,
S.
,
2004
, “
Inferred Pressure Gradient and Fluid Flow in a Condensing Sessile Droplet Based on the Measured Thickness Profile
,”
Phys. Fluids
,
16
(
6
), pp.
1942
1955
.
35.
Chen
,
J. D.
, and
Wada
,
N.
,
1992
, “
Edge Profiles and Dynamic Contact Angles of a Spreading Drop
,”
J. Colloid Interface Sci.
,
148
, pp.
207
222
.
36.
Heslot
,
F.
,
Fraysee
,
N.
, and
Cazabat
,
A. M.
,
1989
, “
Molecular Layering in the Spreading of Wetting Liquid Drops
,”
Nature (London)
,
338
, pp.
640
642
.
37.
Heslot
,
F.
,
Cazabat
,
A. M.
, and
Levinson
,
P.
,
1989
, “
Dynamics of Wetting on Tiny Drops: Ellipsometric Study of the Late Stages of Spreading
,”
Phys. Rev. Lett.
,
62
(
11
), pp.
1286
1289
.
38.
Heslot
,
F.
,
Cazabat
,
A. M.
,
Levinson
,
P.
, and
Fraysee
,
N.
,
1990
, “
Experiments on Wetting on the Scale of Nanometers: Influence of the Surface Energy
,”
Phys. Rev. Lett.
,
65
(
5
), pp.
599
602
.
39.
Kavehpour
,
H. P.
,
Ovryn
,
B.
, and
McKinley
,
G. H.
,
2003
, “
Microscopic and Macroscopic Structure of the Precursor Layer in Spreading Viscous Drops
,”
Phys. Rev. Lett.
,
91
(
19
), p.
196104
196104
.
40.
Churaev
,
N. V.
,
Esipova
,
N. E.
,
Hill
,
R. M.
,
Sobolev
,
V. D.
,
Starov
,
V. M.
, and
Zorin
,
Z. M.
,
2001
, “
The Superspreading Effect of Trisiloxane Surfactant Solutions
,”
Langmuir
,
17
, pp.
1338
1348
.
41.
Dussaud
,
A. D.
, and
Troian
,
S. M.
,
1998
, “
Dynamics of Spontaneous Spreading With Evaporation on a Deep Fluid Layer
,”
Phys. Fluids
,
10
, pp.
23
38
.
42.
Kihm, K. D., and Pratt, D. M., 1999, “Contour Mapping of Thin Liquid Film Thickness Using Fizeau Interferometer,” Proc. of 33rd, National Heat Transfer Conference, Albuquerque, Aug. 15–17, ASME, New York, N.Y., pp. 500–509.
43.
de Gennes
,
P. G.
,
1985
, “
Wetting: Statics and Dynamics
,”
Rev. Mod. Phys.
,
57
, pp.
827
863
.
44.
Joanny
,
J. F.
, and
de Gennes
,
P. G.
,
1986
, “
Upward Creep of a Wetting Fluid: A Scaling Analysis
,”
J. Phys. (Paris)
,
47
, pp.
121
127
.
45.
Dussan
,
E. B. V.
,
Rame
,
E.
, and
Garoff
,
S.
,
1991
, “
On Identifying the Appropriate Boundary Conditions at a Moving Contact Line: An Experimental Investigation
,”
J. Fluid Mech.
,
230
, pp.
97
116
.
46.
Marsh
,
J. A.
,
Garoff
,
S.
, and
Dussan
,
E. B. V.
,
1993
, “
Dynamic Contact Angles and Hydrodynamics Near a Moving Contact Line
,”
Phys. Rev. Lett.
,
70
(
18
), pp.
2778
2781
.
47.
Oron
,
A.
,
Davis
,
S. H.
, and
Bankoff
,
S. G.
,
1997
, “
Long-Scale Evolution of Thin Liquid Films
,”
Rev. Mod. Phys.
,
69
(
3
), pp.
931
980
.
48.
Cazabat
,
A. M.
,
Heslot
,
F.
,
Carles
,
P.
, and
Troian
,
S. M.
,
1992
, “
Hydrodynamic Fingering Instability of Driven Wetting Films
,”
Adv. Colloid Interface Sci.
,
39
, pp.
61
75
.
49.
Hosoi
,
A. E.
, and
Bush
,
J. W. M.
,
2001
, “
Evaporative Instabilities in Climbing Films
,”
J. Fluid Mech.
,
442
, pp.
217
239
.
50.
Fanton
,
X.
, and
Cazabat
,
A. M.
,
1998
, “
Spreading and Instabilities Induced by a Solutal Marangoni Effect
,”
Langmuir
,
14
, pp.
2554
2561
.
51.
Kavehpour
,
P.
,
Ovryn
,
B.
, and
McKinley
,
G. H.
,
2002
, “
Evaporatively-Driven Marangoni Instabilities of Volatile Liquid Films Spreading on Thermally Conductive Substrates
,”
Colloids Surf., A
,
206
, pp.
409
423
.
52.
Ayyaswamy
,
P. S.
,
Catton
,
I.
, and
Edwards
,
D. K.
,
1974
, “
Capillary Flow in Triangular Grooves
,”
ASME J. Appl. Mech.
,
41
, pp.
332
336
.
53.
Xu
,
X.
, and
Carey
,
V. P.
,
1990
, “
Film Evaporation From a Micro-Grooved Surface-An Approximate Heat Transfer Model and Its Comparison With Experimental Data
,”
J. Thermophys. Heat Transfer
,
4
, pp.
512
520
.
54.
Khrustalev
,
D.
, and
Faghri
,
A.
,
1995
, “
Thermal Characteristics of Conventional and Flat Miniature Axially-Grooved Heat Pipes
,”
ASME J. Heat Transfer
,
117
, pp.
1048
1054
.
55.
Wu
,
D.
, and
Peterson
,
G. P.
,
1991
, “
Investigation of the Transient Characteristics of a Micro Heat Pipe
,”
J. Thermophys. Heat Transfer
,
5
, pp.
129
134
.
56.
Anand
,
S.
,
De
,
S.
, and
DasGupta
,
S.
,
2002
, “
Experimental and Theoretical Study of Axial Dry Out Point for Evaporation From V-Shaped Microgrooves
,”
Int. J. Heat Mass Transfer
,
45
, pp.
1535
1543
.
57.
Vasicek, A., 1960, Optics of Thin Films, Interscience Publishers Inc., New York.
58.
Israelachvili, J. N., 1992, Intermolecular and Surface Forces, Second Edition, Academic Press, New York.
59.
Dzyaloshinskii
,
I. E.
,
Liftshitz
,
E. M.
, and
Pitaevskii
,
L. P.
,
1961
, “
The General Theory of van der Waals Forces
,”
Adv. Phys.
,
10
, pp.
165
209
.
60.
Zheng, L., 2002, “Study of Microscale Transport Processes and the Stability of the Thin Film in a Loop Constrained Vapor Bubble,” Ph.D. thesis, Rensselaer Polytechnic Institute, Troy, NY.
61.
Troung
,
J. G.
, and
Wayner
, Jr.,
P. C.
,
1987
, “
Effect of Capillary and van der Waals Dispersion Forces on the Equilibrium Profile of a Wetting Liquid: Theory and Experiment
,”
J. Chem. Phys.
,
87
, pp.
4180
4188
.
62.
Kalliadasis
,
S.
, and
Chang
,
H.-C.
,
1994
, “
Apparent Dynamic Contact Angle of an Advancing Gas-Liquid Meniscus
,”
Phys. Fluids
,
6
, pp.
12
23
.
63.
Sharma
,
A.
,
1993
, “
Equilibrium Contact Angles and Film Thicknesses in the Apolar and Polar Systems: Role of Intermolecular Interactions in Coexistence of Drops With Thin Films
,”
Langmuir
,
9
, pp.
3580
3586
.
64.
2003, CRC Handbook of Chemistry and Physics, 84 Edition, CRC Press, Cleveland.
You do not currently have access to this content.