A new trend in recent years is to reduce the solid oxide fuel cell (SOFC) operating temperature to an intermediate range by employing either a thin electrolyte, or new materials for the electrolyte and electrodes. In this paper, a numerical investigation is presented with focus on modeling and analysis of transport processes in planar intermediate temperature (IT, between 600 and 800°C) SOFCs. Various transport phenomena occurring in an anode duct of an ITSOFC have been analyzed by a fully three-dimensional calculation method. In addition, a general model to evaluate the stack performance has been developed for the purpose of optimal design and/or configuration based on specified electrical power or fuel supply rate.

1.
Steele
,
B. C. H.
, and
Heinzel
,
A.
, 2001, “
Materials for Fuel-Cell Technologies
,”
Nature (London)
0028-0836,
414
, pp.
345
352
.
2.
Yuan
,
J.
,
Rokni
,
M.
, and
Sundén
,
B.
, 2003, “
Gas Flow and Heat Transfer Analysis for an Anode Duct in Reduced Temperature SOFCs
,” FUELCELL2003–1721,
Fuel Cell Science, Engineering and Technology
,
R. K.
Shah
and
S. G.
Kandlikar
(eds) (
ASME
, New York), pp.
209
216
.
3.
Yuan
,
J.
,
Rokni
,
M.
, and
Sundén
,
B.
, 2003, “
Three-Dimensional Computational Analysis of Gas and Heat Transport Phenomena in Ducts Relevant for Anode-Supported Solid Oxide Fuel Cells
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
809
821
.
4.
Zhu
,
B.
,
Bai
,
X. Y.
,
Chen
,
G. X.
, and
Buesell
,
M.
, 2002, “
Fundamental Study on Biomass Fuelled Ceramic Fuel Cells
,”
Int. J. Energy Res.
0363-907X,
26
, pp.
57
66
.
5.
Brchewitz
,
L.
, and
Palsson
,
J.
, 2000, “
Design of an SOFC System Combined to the Gasification of Biomass
,”
Proc. the 4th European SOFC Forum
,
A. J.
McEvoy
, ed., Lucerne, Switzerland, Vol.
1
, pp.
59
68
.
6.
Yuan
,
J.
,
Rokni
,
M.
, and
Sundén
,
B.
, 2001, “
Simulation of Fully Developed Laminar Heat and Mass Transfer in Fuel Cell Ducts with Different Cross Sections
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
4047
4058
.
7.
Teng
,
H.
, and
Zhao
,
T. S.
, 2000, “
An Extension of Darcy’s Law to Non-Stokes Flow in Porous Media
,”
Chem. Eng. Sci.
0009-2509,
55
, pp.
2727
2735
.
8.
Alkam
,
M. K.
,
Al-Nimr
,
M. A.
, and
Hamdan
,
M. O.
, 2001, “
Enhancing Heat Transfer in Parallel-Plate Channels by Using Porous Inserts
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
931
938
.
9.
Alazmi
,
B.
, and
Vafai
,
K.
, 2001, “
Analysis of Fluid Flow and Heat Transfer Interfacial Conditions between a Porous Medium and a Fluid Layer
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
1735
1749
.
10.
Wang
,
J.
,
Gao
,
Z.
,
Gan
,
G.
, and
Wu
,
D.
, 2001, “
Analytical Solution of Flow Coefficients for a Uniformly Distributed Porous Channel
,”
Chem. Eng. J.
0300-9467,
84
, pp.
1
6
.
11.
Comiti
,
J.
,
Sabiri
,
N. E.
, and
Montillet
,
A.
, 2000, “
Experimental Characterization of Flow Regimes in Various Porous Media-III: Limit of Darcy’s or Creeping Flow Regime for Newtonian and Purely Viscous Non-Newtonian Fluids
,”
Chem. Eng. Sci.
0009-2509,
55
, pp.
3057
3061
.
12.
Bejan
,
A.
, 1987,
Convective Heat Transfer in Porous Media
, in
Handbook of Single-phase Convective Heat Transfer
,
Kakac
,
S.
,
Shah
,
R. K.
, and
Aung
,
W.
, eds. (
J. Wiley & Sons
, New York).
13.
Vafai
,
K.
, and
Kim
,
S. J.
, 1994, “
On the Limitations of the Brinkman-Forchheimer-Extended Darcy Equation
,”
Int. J. Heat Fluid Flow
0142-727X,
16
, pp.
11
15
.
14.
Chikh
,
S.
,
Bounedien
,
A.
, and
Bouhadef
,
K.
, 1995, “
Non-Darcian Forced Convection Analysis in an Annulus Partially Filled with a Porous Material
,”
Numer. Heat Transfer, Part A
1040-7782,
28
, pp.
707
722
.
15.
Marafie
,
A.
, and
Vafai
,
K.
, 2001, “
Analysis of Non-Darcian Effects on Temperature Differentials in Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
4401
4411
.
16.
Vafai
,
K.
, and
Kim
,
S. J.
, 1990, “
Fluid Mechanics of the Interface Region between a Porous Medium and a Fluid Layer—An Exact Solution
,”
Int. J. Heat Fluid Flow
0142-727X,
11
, pp.
254
256
.
17.
Yakabe
,
H.
,
Hishinuma
,
M.
,
Uratani
,
M.
,
Matsuzaki
,
Y.
, and
Yasuda
,
I.
, 2000, “
Evaluation and Modeling of Performance of Anode-supported Solid Oxide Fuel Cell
,”
J. Power Sources
0378-7753,
86
, pp.
423
431
.
18.
Iwaa
,
M.
,
Hikosaka
,
T.
,
Morita
,
M.
,
Iwanari
,
T.
,
Ito
,
K.
,
Onda
,
K.
,
Esaki
,
Y.
,
Sakaki
,
Y.
, and
Nagata
,
S.
, 2000, “
Performance Analysis of Planar-type Unit SOFC Considering Current and Temperature Distributions
,”
Solid State Ionics
0167-2738,
132
, pp.
297
308
.
You do not currently have access to this content.