Monte Carlo simulation is applied to investigate phonon transport in single crystalline Si nanowires. Phonon-phonon normal (N) and Umklapp (U) scattering processes are modeled with a genetic algorithm to satisfy energy and momentum conservation. The scattering rates of N and U scattering processes are found from first-order perturbation theory. The thermal conductivity of Si nanowires is simulated and good agreement is achieved with recent experimental data. In order to study the confinement effects on phonon transport in nanowires, two different phonon dispersions, one from experimental measurements on bulk Si and the other solved from elastic wave theory, are adopted in the simulation. The discrepancy between simulations using different phonon dispersions increases as the nanowire diameter decreases, which suggests that the confinement effect is significant when the nanowire diameter approaches tens of nanometers. It is found that the U scattering probability in Si nanowires is higher than that in bulk Si due to the decrease of the frequency gap between different modes and the reduced phonon group velocity. Simulation results suggest that the dispersion relation for nanowires obtained from elasticity theory should be used to evaluate nanowire thermal conductivity as the nanowire diameter is reduced to the sub-100 nm scale.

1.
Klemens
,
P. G.
, 1958,
Solid State Physics
,
Academic Press
, NY.
2.
Callaway
,
J.
, 1959, “
Model of Lattice Thermal Conductivity at Low Temperatures
,”
Phys. Rev.
0031-899X,
113
, pp.
1046
1051
.
3.
Holland
,
M. G.
, 1963, “
Analysis of Lattice Thermal Conductivity
,”
Phys. Rev.
0031-899X,
132
, pp.
2461
2471
.
4.
Armstrong
,
B. H.
, 1985, “
N Processes, the Relaxation-Time Approximation, and the Thermal Conductivity
,”
Phys. Rev. B
0163-1829,
32
, pp.
3381
3390
.
5.
Chen
,
G.
, 2001, “
Ballistic-Diffusive Heat-Conduction Equations
,”
Phys. Rev. Lett.
0031-9007,
86
, pp.
2297
2230
.
6.
Ju
,
Y. S.
, and
Goodson
,
K. E.
, 1999, “
Phonon Scattering in Silicon Thin Films with Thickness of Order 100 nm
,”
Appl. Phys. Lett.
0003-6951,
14
, pp.
3005
3007
.
7.
Kurosawa
,
T.
, 1966, “
Monte Carlo simulation of hot electron problems
,”
Proceedings of the International Conference on the Physics of Semiconductor
, Kyoto,
J. Phys. Soc. Jpn.
0031-9015
21
, pp.
424
427
.
8.
Budd
,
H.
, 1967, “
Path Variable Formulation of the Hot Carrier Problem
,”
Phys. Rev.
0031-899X,
158
, pp.
798
804
.
9.
Jacoboni
,
C.
, and
Reggiani
,
L.
, 1983, “
The Monte Carlo Method for the Solution of Charge Transport in Semiconductors with Applications to Covalent Materials
,”
Rev. Mod. Phys.
0034-6861,
55
, pp.
645
705
.
10.
Bachelli
,
L.
, and
Jacoboni
,
C.
, 1972, “
Electron-Electron Interactions in Monte Carlo Transport Calculations
,”
Solid State Commun.
0038-1098,
10
, pp.
71
74
.
11.
Matulionis
,
A.
,
Pozela
,
J.
, and
Reklaitis
,
A.
, 1975, “
Monte Carlo Treatment of Electron-Electron Collisions
,”
Solid State Commun.
0038-1098,
16
, pp.
1133
1137
.
12.
Jacoboni
,
C.
, 1978, “
Noise and Diffusion of Hot Holes in Si
,”
Solid-State Electron.
0038-1101,
21
, pp.
315
318
.
13.
Klitsner
,
T.
,
VanCleve
,
J. E.
,
Fisher
,
H. E.
, and
Pohl
,
R. O.
, 1988, “
Phonon Radiative Heat Transfer and Surface Scattering
,”
Phys. Rev. B
0163-1829,
38
, pp.
7576
7594
.
14.
Peterson
,
R. B.
, 1994, “
Direct Simulation of Phonon-Mediate Heat Transfer in A Debye Crystal
,”
ASME J. Heat Transfer
0022-1481,
116
, pp.
815
822
.
15.
Mazumder
,
S.
, and
Majumdar
,
A.
, 2001, “
Monte Carlo Study of Phonon Transport in Solid Thin Films including Dispersion and Polarization
,”
ASME J. Heat Transfer
0022-1481,
123
, pp.
749
759
.
16.
Li
,
D.
,
Wu
,
Y.
,
Kim
,
P.
,
Shi
,
L.
,
Yang
,
P.
, and
Majumdar
,
A.
, 2003, “
Thermal Conductivity of Individual Silicon Nanowires
,”
Appl. Phys. Lett.
0003-6951,
83
, pp.
2934
2936
.
17.
Li
,
D.
,
Wu
,
Y.
,
Fan
,
R.
,
Yang
,
P.
, and
Majumdar
,
A.
, 2003, “
Thermal Conductivity of Si∕SiGe Superlattice Nanowires
,”
Appl. Phys. Lett.
0003-6951,
83
, pp.
3186
3188
.
18.
Vincenti
,
W. G.
, and
Kruger
,
C. H.
, 1977,
Introduction to Physical Gas Dynamics
,
Robert Krieger Publication
, New York.
19.
Majumdar
,
A.
, 1993, “
Microscale Heat Conduction in Dielectric Thin Films
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
7
16
.
20.
Peierls
,
R. E.
, 1955,
Quantum Theory of Solids
,
Oxford University Press
, Oxford.
21.
Goldberg
,
D. E.
, 1982,
Genetic Algorithms in Search, Optimization, and Machine Learning
,
Addison-Wesley Publishing Company
.
22.
Asen-Palmer
,
M.
,
Bartkowski
,
K.
,
Gmelin
,
E.
,
Cardona
,
M.
,
Zhernov
,
A. P.
,
Inyushkin
,
A. V.
,
Taldenkov
,
A.
,
Ozhogin
,
V. I.
,
Itoh
,
K. M.
, and
Haller
,
E. E.
, 1997, “
Thermal Conductivity of Germanium Crystals with Different Isotopic Compositions
,”
Phys. Rev. B
0163-1829,
56
, pp.
9431
9447
.
23.
Brockhouse
,
B. N.
, 1959, “
Lattice Vibrations in Silicon and Germanium
,”
Phys. Rev. Lett.
0031-9007,
2
, pp.
256
258
.
24.
Auld
,
B. A.
, 1973,
Acoustic Fields and Waves in Solids
,
Wiley
, NY.
25.
Herring
,
C.
, 1954, “
Role of Low Energy Phonons in Thermal Conduction
,”
Phys. Rev.
0031-899X,
95
, pp.
954
965
.
26.
Simons
,
S.
, 1963,
Proc. Phys. Soc. London
0370-1328,
82
, pp.
401
405
.
27.
Blencowe
,
M. P.
, 1999, “
Quantum Energy Flow in Mesoscopic Dielectric Structures
,”
Phys. Rev. B
0163-1829,
59
, pp.
4992
4998
.
28.
Han
,
Y.-J.
, and
Klemens
,
P. G.
, 1993, “
Anharmonic Thermal Resistivity of Dielectric Crystals at Low Temperatures
,”
Phys. Rev. B
0163-1829,
48
, pp.
6033
6042
.
29.
Kremer
,
R. K.
,
Graf
,
K.
,
Cardona
,
M.
,
Devyatykh
,
G. G.
,
Gusev
,
A. V.
,
Gibin
,
A. M.
,
Inyushkin
,
A. V.
,
Taldenkov
,
A. N.
, and
Pohl
,
H.-J.
, 2004, “
Thermal Conductivity of Isotopically Enriched 28Si: Revisited
,”
Solid State Commun.
0038-1098,
131
, pp.
499
503
.
30.
Zou
,
J.
, and
Alexander
,
B.
, 2001, “
Phonon Heat Conduction in A Semiconductor Nanowire
,”
J. Appl. Phys.
0021-8979,
89
, pp.
2932
2938
.
31.
Khitun
,
A.
, and
Wang
,
K. L.
, 2001, “
Modification of the Three-Phonon Umklapp Process in A Quantum Wire
,”
Appl. Phys. Lett.
0003-6951,
79
, pp.
851
853
.
32.
Volz
,
S.
,
Lemonnier
,
D.
, and
Saulnier
,
J.-B.
, 2001, “
Clamped Nanowire Thermal Conductivity Based on Phonon Transport Equation
,”
Microscale Thermophys. Eng.
1089-3954,
5
, pp.
191
207
.
33.
,
X.
,
Chu
,
J. H.
, and
Shen
,
W. Z.
, 2003, “
Modification of the Lattice Thermal Conductivity in Semiconductor Rectangular Nanowires
,”
J. Appl. Phys.
0021-8979,
93
, pp.
1219
1229
.
34.
Volz
,
S.
, and
Chen
,
G.
, 1999, “
Molecular Dynamics Simulation of Thermal Conductivity of Silicon Nanowires
,”
Appl. Phys. Lett.
0003-6951,
75
, pp.
2056
2058
.
35.
Dames
,
C.
, and
Chen
,
G.
, 2004, “
Theoretical Phonon Thermal Conductivity of SI∕Ge Superlattice Nanowires
,”
J. Appl. Phys.
0021-8979,
95
, pp.
682
693
.
36.
Mingo
,
N.
, 2003, “
Calculation of Si Nanowire Thermal Conductivity using Complete Phonon Dispersion Relations
,”
Phys. Rev. B
0163-1829,
68
, pp.
113308
-1–113308-
4
.
37.
Mingo
,
N.
,
Yang
,
L.
,
Li
.,
D.
, and
Majumdar
,
A.
, 2003, “
Predicting the Thermal Conductivity of Si and Ge Nanowires
,”
Nano Lett.
1530-6984,
3
, pp.
1713
1716
.
You do not currently have access to this content.