The role of phonon dispersion in the prediction of the thermal conductivity of germanium between temperatures of 2 K and 1000 K is investigated using the Holland approach. If no dispersion is assumed, a large, nonphysical discontinuity is found in the transverse phonon relaxation time over the entire temperature range. However, this effect is masked in the final prediction of the thermal conductivity by the use of fitting parameters. As the treatment of the dispersion is refined, the magnitude of the discontinuity is reduced. At the same time, discrepancies between the high temperature predictions and experimental data become apparent, indicating that the assumed heat transfer mechanisms (i.e., the relaxation time models) are not sufficient to account for the expected thermal transport. Molecular dynamics simulations may be the most suitable tool available for addressing this issue.

1.
Debye, P., 1914, Vortrage uber die kinetische Theorie der Materie und der Elektrizitat, Teubner, Berlin.
2.
Peierls, R., 1997, “On the Kinetic Theory of Thermal Conduction,” Selected Scientific Papers of Sir Rudolf Peierls With Commentary, Dalitz, R. H. and Peierls, R., eds., World Scientific, Singapore, pp. 15–48.
3.
Callaway
,
J.
,
1959
, “
Model for Lattice Thermal Conductivity at Low Temperatures
,”
Phys. Rev.
,
113
, pp.
1046
1051
.
4.
Holland
,
M. G.
,
1963
, “
Analysis of Lattice Thermal Conductivity
,”
Phys. Rev.
,
132
, pp.
2461
2471
.
5.
Tiwari
,
M. D.
, and
Agrawal
,
B. K.
,
1971
, “
Analysis of the Lattice Thermal Conductivity of Germanium
,”
Phys. Rev. B
,
4
, pp.
3527
3532
.
6.
Sood
,
K. C.
, and
Roy
,
M. K.
,
1993
, “
Longitudinal Phonons and High-Temperature Heat Conduction in Germanium
,”
J. Phys.: Condens. Matter
,
5
, pp.
301
312
.
7.
Asen-Palmer
,
M.
,
Bartkowski
,
K.
,
Gmelin
,
E.
,
Cardona
,
M.
,
Zhernov
,
A. P.
,
Inyushkin
,
A. V.
,
Taldenkov
,
A.
,
Ozhogin
,
V. I.
,
Itoh
,
K. M.
, and
Haller
,
E. E.
,
1997
, “
Thermal Conductivity of Germanium Crystals With Different Isotopic Compositions
,”
Phys. Rev. B
,
56
, pp.
9431
9447
.
8.
Nilsson
,
G.
, and
Nelin
,
G.
,
1971
, “
Phonon Dispersion Relations in Ge at 80 K
,”
Phys. Rev. B
,
3
, pp.
364
369
.
9.
Dove, M. T., 1993, Introduction to Lattice Dynamics, Cambridge, Cambridge.
10.
Kittel, C., 1996, Introduction to Solid State Physics, Wiley, New York.
11.
Geballe
,
T. H.
, and
Hull
,
G. W.
,
1958
, “
Isotopic and Other Types of Thermal Resistance in Germanium
,”
Phys. Rev.
,
110
, pp.
773
775
.
12.
Klemens
,
P. G.
,
1958
, “
Thermal Conductivity and Lattice Vibrational Modes
,”
Solid State Phys.
,
7
, pp.
1
98
.
13.
Slack
,
G. A.
,
1957
, “
Effect of Isotopes on Low-Temperature Thermal Conductivity
,”
Phys. Rev.
,
105
, pp.
829
831
.
14.
Ziman, J. M., 2001, Electrons and Phonons, Oxford, Oxford.
15.
McGaughey
,
A. J. H.
, and
Kaviany
,
M.
,
2004
, “
Quantitative Validation of the Boltzmann Transport Equation Thermal Conductivity Model Under the Single Mode Relaxation Time Approximation
,”
Phys. Rev. B
,
69, 094303
, pp.
1
12
.
16.
Hamilton
,
R. A.
, and
Parrott
,
J. E.
,
1969
, “
Variational Calculation of the Thermal Conductivity of Germanium
,”
Phys. Rev.
,
178
, pp.
1284
1292
.
17.
Mazumder
,
S.
, and
Majumdar
,
A.
,
2001
, “
Monte Carlo Study of Phonon Transport in Solid Thin Films Including Dispersion and Polarization
,”
ASME J. Heat Transfer
,
123
, pp.
749
759
.
18.
Ju
,
Y. S.
, and
Goodson
,
K. E.
,
1999
, “
Phonon Scattering in Silicon Films With Thickness of Order 100 nm
,”
Appl. Phys. Lett.
,
74
, pp.
3005
3007
.
19.
Slack
,
G. A.
, and
Glassbrenner
,
C.
,
1960
, “
Thermal Conductivity of Germanium From 3 K to 1020 K
,”
Phys. Rev.
,
120
, pp.
782
789
.
20.
McGaughey
,
A. J. H.
, and
Kaviany
,
M.
,
2004
, “
Thermal Conductivity Decomposition and Analysis Using Molecular Dynamics Simulations. Part II. Complex Silica Structures
,”
Int. J. Heat Mass Transfer
,
47
, pp.
1799
1816
.
You do not currently have access to this content.