The force required to draw a polymer preform into optical fiber is predicted and measured, along with the resultant free surface shape of the polymer, as it is heated in an enclosed cylindrical furnace. The draw force is a function of the highly temperature dependent polymer viscosity. Therefore accurate prediction of the draw force relies critically on the predicted heat transfer within the furnace. In this investigation, FIDAP was used to solve the full axi-symmetric conjugate problem, including natural convection, thermal radiation, and prediction of the polymer free surface. Measured and predicted shapes of the polymer free surface compared well for a range of preform diameters, draw speeds, and furnace temperatures. The predicted draw forces were typically within 20% of the experimentally measured values, with the draw force being very sensitive to both the furnace wall temperature and to the feed rate of the polymer.

1.
Senior, J. M, 1992, Optical Fiber Communication: Principles and Practice, Prentice Hall.
2.
Jiang
,
C.
,
Kuzyk
,
M. G.
,
Ding
,
J.-L.
,
Johns
,
W. E.
, and
Welker
,
D. J.
,
2002
, “
Fabrication and Mechanical Behavior of Dye-Doped Polymer Optical Fiber
,”
J. Appl. Phys.
,
92
(
1
), pp.
4
12
.
3.
Glicksman
,
L. R.
,
1968
, “
The Dynamics of a Heated Free Jet of Variable Viscosity Liquid at Low Reynolds Number
,”
ASME J. Basic Eng.
,
90
, pp.
343
354
.
4.
Paek
,
U. C.
, and
Runk
,
R. B.
,
1978
, “
Physical Behavior of the Neck-Down Region During Furnace Drawing of Silica Fibers
,”
J. Appl. Phys.
,
49
(
8
), pp.
4417
4422
.
5.
Roy Choudhury
,
S.
,
Jaluria
,
Y.
, and
Lee
,
S. H.-K.
,
1999
, “
A Computational Method for Generating the Free Surface Neck-Down Profile for Glass Flow in Optical Fiber Drawing
,”
Numer. Heat Transfer, Part A
,
35
, pp.
1
24
.
6.
Lee
,
S. H.-K.
, and
Jaluria
,
Y.
,
1995
, “
The Effects of Geometry and Temperature Variations on the Radiative Transport During Optical Fiber Drawing
,”
J. Mater. Process. Manuf. Sci.
,
3
, pp.
317
331
.
7.
Reeve
,
H. M.
, and
Mescher
,
A. M.
,
1999
, “
A Study on Transient Heating of Polymer Fiber Preforms
,”
J. Mater. Process. Manuf. Sci.
,
8
(
2
), pp.
94
105
.
8.
Yin
,
Z.
, and
Jaluria
,
Y.
,
1997
, “
Zonal Method to Model Radiative Transport in an Optical Fiber Drawing Furnace
,”
ASME J. Heat Transfer
,
119
, pp.
597
603
.
9.
Liu
,
J.
,
Zhang
,
S. J.
, and
Chen
,
Y. S.
,
2001
, “
Advanced Simulation of Optical Fiber Drawing Process
,”
Numer. Heat Transfer, Part A
,
40
, pp.
473
496
.
10.
Sala, A., 1986, Radiation Properties of Materials, Elsevier.
11.
Schrader, B., 1989, Raman/Infrared Atlas of Organic Compounds, Wiley-VCH.
12.
Manohar
,
S. S.
, and
Thynell
,
S. T.
,
1995
, “
In-Depth Absorption of Externally Incident Radiation in Nongray Media
,”
ASME J. Heat Transfer
,
117
, pp.
146
151
.
13.
Touloukian, Y. S., and DeWitt, D. P., 1970, Thermophysical Properties of Matter: Thermal Radiative Properties, TPDR Data Series, 8, IFI Plenum.
14.
Reeve
,
H. M.
,
Mescher
,
A. M.
, and
Emery
,
A. F.
,
2001
, “
Experimental and Numerical Investigation of Polymer Preform Heating
,”
J. Mater. Process. Manuf. Sci.
,
9
(
4
), pp.
285
301
.
15.
Papamichael
,
H.
,
Pellon
,
C.
, and
Miaoulis
,
I. N.
,
1997
, “
Air Flow Patterns in the Optical Fibre Drawing Furnace
,”
Glass Technol.
,
38
(
1
), pp.
22
29
.
16.
Reeve
,
H. M.
, and
Mescher
,
A. M.
,
2003
, “
Effect of Unsteady Natural Convection on the Diameter of Drawn Polymer Optical Fiber
,”
Opt. Express
,
11
, pp.
1770
1779
.
17.
Gray
,
D. D.
, and
Giorgini
,
A.
,
1975
, “
The Validity of the Boussinesq Approximation for Liquids and Gases
,”
Int. J. Heat Mass Transfer
,
19
, pp.
545
551
.
18.
Van Wylen, G., Sonntag, R., and Borgnakke, C., 1994, Fundamentals of Classical Thermodynamics, John Wiley and Sons.
19.
Lee
,
S. H.-K.
, and
Jaluria
,
J.
,
1996
, “
Effects of Variable Properties and Viscous Dissipation During Optical Fiber Drawing
,”
ASME J. Heat Transfer
,
118
, pp.
350
358
.
20.
Incropera, F. P., and DeWitt, D. P., 1990, Fundamentals of Heat and Mass Transfer, Wiley.
21.
Siegel, R. and Howell, J. R., 1992, Thermal Radiation Heat Transfer, Taylor & Francis.
22.
Gubareff, G. G., and Janssen, J. E., 1960, Thermal Radiation Properties Survey, Honeywell.
23.
Fluent Inc, 1999, FIDAP Users Manual, Fluent Inc., Lebanon, NH.
24.
Saito
,
H.
, and
Scriven
,
L. E.
,
1981
, “
Study of Coating by the Finite Element Method
,”
J. Comput. Phys.
,
42
, pp.
53
76
.
25.
Cohen
,
M. F.
, and
Greenberg
,
D. P.
,
1985
, “
The Hemi-Cube: A Radiosity Solution for Complex Environments
,”
Comput. Graphics
,
19
(
3
), pp.
31
40
.
26.
Drummond, J. E., Yovichen, A. J., and J. P. McKee, 1991, “The Effect of Upwind Formulations on Secondary Flows in a Thermally Driven Cavity,” Proc. ASME-JSME Thermal Engineering. Joint Conf., 1, pp. 147–154.
27.
Vest
,
C. M.
, and
Arpaci
,
V.
,
1969
, “
Stability of Natural Convection in a Vertical Slot
,”
J. Fluid Mech.
,
36
, pp.
1
15
.
28.
Le Que´re´
,
P.
, and
Pe´cheux
,
J.
,
1989
, “
Numerical Simulations of Multiple Flow Transitions in Axisymmetric Annulus Convection
,”
J. Fluid Mech.
,
206
, pp.
517
544
.
29.
Roache
,
P. J.
,
1997
, “
Quantification of Uncertainty in Computational Fluid Dynamics
,”
Annu. Rev. Fluid Mech.
,
29
, pp.
123
160
.
30.
Kase
,
S.
, and
Matsuo
,
T.
,
1965
, “
Studies on Melt Spinning. I. Equations on the Dynamics of Melt Spinning
,”
J. Polym. Sci. A
,
3
, pp.
2555
2565
.
31.
Sperling, L. H., 1992, Introduction to Physical Polymer Science, Wiley, pp. 337.
32.
Marcou, J., 1997, Plastic Optical Fibres: Practical Applications, Wiley.
You do not currently have access to this content.