Resin Transfer Molding is one of the Liquid Composite Molding processes in which a thermoset resin is infiltrated into a fibrous porous media in a closed mold. To reduce the curing time of the resin, the mold may be heated, influencing other filling parameters such as the resin viscosity. Analysis of the non-isothermal effects during filling will help to understand the manufacturing process. One of the issues of non-isothermal filling in porous media is the variation of the velocity profile at the micro scale level, which as it is averaged, cannot be included in the convective term. To account for it, the thermal conductivity tensor is modified and a thermal dispersion coefficient Kd is introduced to model the micro convection effects. In this paper, we explore the temperature profile under non-isothermal conditions for radial injection during Resin Transfer Molding in order to determine the thermal dispersion coefficient. An approximate solution is derived from the series solution and validated with a numerical method. Experiments using carbon fibers and polyester resin were conducted. The thermal dispersion coefficient is determined by comparing experimental results with the steady state analytical solution. The comparison between radial and linear injection results shows that the same degree of dispersion is present in isotropic fibrous porous media.

1.
Hsiao
,
K. T.
,
Laudorn
,
H.
, and
Advani
,
S. G.
,
2001
, “
Experimental Investigation of Thermal Dispersion Due to Impregnation of Viscous Fluids in Heated Fibrous Porous Media During Composites Processing
,”
ASME J. Heat Transfer
,
123
, pp.
178
187
.
2.
Advani, S. G., Bruschke, M. V., and Parnas, R. S., 1994, “Resin Transfer Molding Flow Phenomena in Polymeric Composites,” Flow and Rheology in Polymer Composites Manufacturing, S. G. Advani, ed., Elsevier, Amsterdam, pp. 465–515.
3.
Zhang, W., and Advani, S. G., 1994, “Heat Dispersion in Stationary Fiber Beds,” Mechanics in Materials Processing and Manufacturing, ASME AMD, 194, pp. 335–352.
4.
Tucker III, C. L., and Dessenberger, R. B., 1994, “Governing Equations for Flow and Heat Transfer in Stationary Fiber Beds,” Flow and Rheology in Composites Manufacturing, Suresh G. Advani, ed., Elsevier, Amsterdam, pp. 257–323.
5.
Bruschke
,
M. V.
, and
Advani
,
S. G.
,
1990
, “
A Finite Element/Control Volume Approach to Mold Filling in Anisotropic Porous Media
,”
Polym. Compos.
,
11
, pp.
398
405
.
6.
Bruschke
,
M. V.
, and
Advani
,
S. G.
,
1991
, “
RTM: Filling Simulation of Complex Three-Dimensional Shell-Like Structures
,”
SAMPE Q.
,
23
(
1
), pp.
2
11
.
7.
Bruschke
,
M. V.
, and
Advani
,
S. G.
,
1994
, “
A Numerical Approach to Model Non-Isothermal, Viscous Flow With Free Surfaces Through Fibrous Media
,”
Int. J. Numer. Methods Fluids
,
19
, pp.
575
60
.
8.
Liu, B., and Advani, S. G., 1995, “Operator Splitting Scheme for 3-D Temperature Solution Based on 2-D Flow Approximation,” Computational Mechanics, 38, pp. 74–82.
9.
Liu
,
B.
,
Bickerton
,
S.
, and
Advani
,
S. G.
,
1996
, “
Modeling and Simulation of RTM: Gate Control, Venting and Dry Spot Prediction
,”
Composites, Part A
,
27
, pp.
135
141
.
10.
Maier
,
R. S.
,
Rohaly
,
T. F.
,
Advani
,
S. G.
, and
Fickie
,
K. D.
,
1996
, “
A Fast Numerical Method for Isothermal Resin Transfer Mold Filling
,”
Int. J. Numer. Methods Eng.
,
39
, pp.
1405
1422
.
11.
Bickerton
,
S.
,
Simacek
,
P.
,
Guglielmi
,
S.
, and
Advani
,
S. G.
,
1997
, “
Investigation of Draping and its Effects on the Mold Filling Process During Manufacturing of a Compound Curved Composite Part
,”
Composites, Part A
,
28A
, pp.
801
816
.
12.
Simacek
,
P.
, and
Advani
,
S. G.
,
2001
, “
An Analytic Solution for the Temperature Distribution in Flow Through Porous Media in Narrow Gaps: I—Linear Injection
,”
Heat Mass Transfer
,
1–2
, pp.
25
33
.
13.
Simacek
,
P.
, and
Advani
,
S. G.
,
2001
, “
An Analytic Solution for the Temperature Distribution in Flow Through Porous Media in Narrow Gaps: II—Radial Injection
,”
Heat Mass Transfer
,
6
, pp.
497
505
.
14.
Simacek, P., and Advani, S. G., 2003, “Approximate Numerical Method for Prediction of Temperature Distribution in Flow Through Narrow Gaps,” accepted in Journal of Computational Mechanics.
15.
Yang
,
J. H.
, and
Lee
,
S. L.
,
1998
, “
Effect of Anisotropy on Transport Phenomena in Anisotropic Porous Media
,”
Int. J. Heat Mass Transfer
,
42
, pp.
2673
2681
.
16.
Lee
,
S. L.
, and
Yang
,
J. H.
,
1998
, “
Modelling of Effective Thermal Conductivity for a Non-Homogeneous Anisotropic Porous Medium
,”
Int. J. of Heat and Mass Transfer
,
41
(
6–7
), pp.
931
937
.
17.
Lin
,
R.
,
Lee
,
L. J.
, and
Liou
,
M.
,
1993
, “
Mold Filling and Curing Analysis Liquid Composite Molding
,”
Polym. Compos.
,
14
(
1
), pp.
71
81
.
18.
Hunt
,
M. L.
, and
Tien
,
C. L.
,
1988
, “
Effects of Thermal Dispersion on Forced Convection in Fibrous Media
,”
Int. J. Heat Mass Transfer
,
31
(
2
), pp.
301
309
.
19.
Quintard
,
M.
, and
Whitaker
,
S.
,
1995
, “
Local Thermal Equilibrium for Transient Heat Conduction: Theory and Comparison With Numerical Experiments
,”
Int. J. Heat Mass Transfer
,
38
(
15
), pp.
2779
2796
.
20.
Jiang
,
P. X.
,
Ren
,
Z. P.
, and
Wang
,
B. X.
,
1999
, “
Numerical Simulation of Forced Convection Heat Transfer in Porous Plate Channels Using Thermal Equilibrium and Non-Isothermal Equilibrium Models
,”
Numer. Heat Transfer, Part A
,
35
, pp.
99
113
.
21.
Kuwahara
,
F.
, and
Nakayama
,
A.
,
1999
, “
Numerical Determination of Thermal Dispersion Coefficients Using a Periodic Porous Structure
,”
ASME J. Heat Transfer
,
121
, pp.
160
167
.
22.
Hsu
,
C. T.
, and
Cheng
,
P.
,
1990
, “
Thermal Dispersion in a Porous Medium
,”
Int. J. Heat Mass Transfer
,
33
(
8
), pp.
1587
1597
.
23.
Winterberg
,
M.
,
Tsotas
,
E.
,
Krischke
,
A.
, and
Vortmeyer
,
D.
,
2000
, “
A Simple and Coherent Set of Coefficients for Modeling of Heat and Mass Transport With and Without Chemical Reaction in Tube Filled With Spheres
,”
Chem. Eng. Sci.
,
55
, pp.
967
979
.
24.
Amiri
,
A.
, and
Vafai
,
K.
,
1998
, “
Transient Analysis of Incompressible Flow Through a Packed Bed
,”
Int. J. Heat Mass Transfer
,
41
, pp.
4259
4279
.
25.
Lebrun
,
G.
, and
Gauvin
,
R.
,
1995
, “
Heat Transfer Analysis in a Heated Mold During the Impregnation Phase of the Resin Transfer Molding Process
,”
J. Mater. Process. Manuf. Sci.
,
4
(
2
), pp.
81
104
.
26.
Adnani
,
P.
,
Catton
,
I.
, and
Abdou
,
M. A.
,
1995
, “
Non-Darcian Forced Convection in Porous Media With Anisotropic Dispersion
,”
ASME J. Heat Transfer
,
117
, pp.
447
451
.
27.
Quintard
,
M.
,
Kaviany
,
M.
, and
Whitaker
,
S.
,
1997
, “
Two-Medium Treatment of Heat Transfer in Porous Media: Numerical Results for Effective Properties
,”
Adv. Water Resour.
,
20
, pp.
77
94
.
28.
Zanotti
,
F.
, and
Carbonell
,
R. G.
,
1984
, “
Development of Transport Equations for Multiphase Systems-III, Application to Heat Transfer in Packed Beds
,”
Chem. Eng. Sci.
,
39
(
2
), pp.
299
311
.
29.
Young
,
W. B.
,
1995
, “
Thermal Behavior of the Resin and Mold in the Process of Resin Transfer Molding
,”
J. Reinf. Plast. Compos.
,
14
(
4
), p.
310
310
.
30.
Koch
,
D. L.
, and
Brady
,
J. F.
,
1987
, “
The Symmetry of the Effective Diffusivity Tensor in Anisotropic Porous Media
,”
Phys. Fluids
,
30
, pp.
642
650
.
31.
Koch
,
D. L.
, and
Brady
,
J. F.
,
1985
, “
Dispersion in Fixed Bed
,”
J. Fluid Mech.
,
154
, pp.
399
427
.
32.
Yuan
,
Z. G.
,
Somerton
,
W. H.
, and
Udell
,
K. S.
,
1991
, “
Thermal Dispersion in Thick-Walled Tubes as a Model of Porous Media
,”
Int. J. Heat Mass Transfer
,
34
(
11
), pp.
2715
2726
.
You do not currently have access to this content.