The problem of laminar natural convection from a horizontal cylinder with multiple equally spaced high conductivity permeable fins on its outer surface was investigated numerically. The effect of several combinations of number of fins and fin height on the average Nusselt number was studied over a wide range of Rayleigh number. Permeable fins provided much higher heat transfer rates compared to the more traditional solid fins for a similar cylinder configuration. The ratio between the permeable to solid Nusselt numbers increased with Rayleigh number, number of fins, and fin height. This ratio was as high as 8.4 at Rayleigh number of 106, non-dimensional fin height of 2.0, and with 11 equally spaced fins. The use of permeable fins is very advantageous when high heat transfer rates are needed such as in today’s high power density electronic components.

1.
Morgan
,
V. T.
,
1975
, “
The Overall Convective Heat Transfer From Smooth Circular Cylinders
,”
Adv. Heat Transfer
,
11
, pp.
199
264
.
2.
Churchill
,
S. W.
, and
Chu
,
H. H. S.
,
1975
, “
Correlating Equations for Laminar and Turbulent Free Convection From a Horizontal Cylinder
,”
Int. J. Heat Mass Transf.
,
18
, pp.
1049
1053
.
3.
Kuehn
,
T. H.
, and
Goldstein
,
R. J.
,
1980
, “
Numerical Solutions to the Navier-Stokes Equations for Laminar Natural Convection About a Horizontal Cylinder
,”
Int. J. Heat Mass Transf.
,
23
, pp.
971
979
.
4.
Farouk
,
B.
, and
Guceri
,
S. I.
,
1981
, “
Natural Convection From a Horizontal Cylinder-Laminar Regime
,”
J. Heat Transfer
, ,
103
, pp.
522
527
.
5.
Wang
,
P.
,
Kahawita
,
R.
, and
Nguyen
,
T. H.
,
1990
, “
Numerical Computation of the Natural Convection Flow About a Horizontal Cylinder Using Splines
,”
Numer. Heat Transfer, Part A
,
17
, pp.
191
215
.
6.
Saitoh
,
T.
,
Sajik
,
T.
, and
Maruhara
,
K.
,
1993
, “
Benchmark Solutions to Natural Convection Heat Transfer Problem Around a Horizontal Circular Cylinder
,”
Int. J. Heat Mass Transf.
,
36
, pp.
1251
1259
.
7.
Chai
,
J. C.
, and
Patankar
,
S. V.
,
1993
, “
Laminar Natural Convection in Internally Finned Horizontal Annuli
,”
Numer. Heat Transfer, Part A
,
24
, pp.
67
87
.
8.
Abu-Hijleh
,
B. A/K
,
Abu-Qudais
,
M.
, and
Abu-Nada
,
E.
,
1998
, “
Entropy Generation Due to Laminar Natural Convection From a Horizontal Isothermal Cylinder
,”
J. Heat Transfer
, ,
120
, pp.
1089
1990
.
9.
Eckert
,
E. R. G.
,
Goldstein
,
R. J.
,
Ibele
,
W. E.
,
Patankar
,
S. V.
,
Simon
,
T. W.
,
Kuehn
,
T. H.
,
Strykowski
,
P. J.
,
Tamman
,
K. K.
,
Bar-Cohen
,
A.
,
Heberlein
,
J. V. R.
,
Davidson
,
J. H.
,
Bischof
,
J.
,
Kulacki
,
F. A.
,
Kortshagenm
,
U.
, and
Garrick
,
S.
,
2000
, “
Heat Transfer—A Review of 1997 Literature
,”
Int. J. Heat Mass Transf.
,
43
, pp.
2431
2528
.
10.
Abu-Hijleh
,
B. A/K
,
2001
, “
Natural Convection and Entropy Generation From a Cylinder with high Conductivity Fins
,”
J. Numer. Heat Transfer
,
39
, pp.
405
432
.
11.
Stewart
,
W. E.
, and
Burns
,
A. S.
,
1992
, “
Convection in a Concentric Annulus with Heat Generating Porous Media and a Permeable Inner Boundary
,”
Int. Commun. Heat Mass Transfer
,
19
, pp.
859
868
.
12.
Zhao
,
T. S.
, and
Liao
,
Q.
,
2000
, “
On Capillary-Driven Flow and Phase-Change Heat Transfer in a Porous Structure Heated by a Finned Surface: Measurements and Modeling
,”
Int. J. Heat Mass Transf.
,
43
, pp.
1141
1155
.
13.
Zhao
,
T. S.
, and
Song
,
Y. J.
,
2001
, “
Forced Convection in a Porous Medium Heated by a Permeable Wall Perpendicular to Flow Direction: Analyses and Measurements
,”
Int. J. Heat Mass Transf.
,
44
, pp.
1031
1037
.
14.
Anderson, J. D., 1994, Computational Fluid Dynamics: The Basics with Applications, McGraw Hill, New York.
15.
Patankar, S. V., 1980, Numerical Heat Transfer of Fluid Flow, McGraw Hill, New York.
You do not currently have access to this content.