Measurements of detailed heat transfer coefficient distributions on a turbine blade tip were performed in a large-scale, low-speed wind tunnel facility. Tests were made on a five-blade linear cascade. The low-speed wind tunnel is designed to accommodate the 107.49 deg turn of the blade cascade. The mainstream Reynolds number based on cascade exit velocity was 5.3×105. Upstream unsteady wakes were simulated using a spoke-wheel type wake generator. The wake Strouhal number was kept at 0 or 0.1. The central blade had a variable tip gap clearance. Measurements were made at three different tip gap clearances of about 1.1 percent, 2.1 percent, and 3 percent of the blade span. Static pressure distributions were measured in the blade mid-span and on the shroud surface. Detailed heat transfer coefficient distributions were measured on the blade tip surface using a transient liquid crystal technique. Results show that reduced tip clearance leads to reduced heat transfer coefficient over the blade tip surface. Results also show that reduced tip clearance tends to weaken the unsteady wake effect on blade tip heat transfer.

1.
Bindon, J. P., and Morphus, G., 1988, “The Effect of Relative Motion, Blade Edge Radius and Gap Size on the Blade Tip Pressure Distribution in An Annular Turbine Cascade With Clearance,” ASME Paper 88-GT-256.
2.
Bindon
,
J. P.
,
1989
, “
The Measurement and Formation of Tip Clearance Loss
,”
ASME J. Turbomach.
,
111
, pp.
258
263
.
3.
Moore
,
J.
,
Moore
,
J. G.
,
Henry
,
G. S.
, and
Chaudhury
,
U.
,
1989
, “
Flow and Heat Transfer in Turbine Tip Gaps
,”
ASME J. Turbomach.
,
111
, pp.
301
309
.
4.
Yamamoto
,
A.
,
1989
, “
Endwall Flow/Loss Mechanisms in a Linear Turbine Cascade With Blade Tip Clearance
,”
ASME J. Turbomach.
,
111
, pp.
264
275
.
5.
Yaras, M. I., and Sjolander, S. A., 1991, “Effects of Simulated Rotation on Tip Leakage in a Planar Cascade of Turbine Blades: Part I—Tip Gap Flow,” ASME Paper 91-GT-127.
6.
Sjolander
,
S. A.
, and
Cao
,
D.
,
1995
, “
Measurements of the Flow in an Idealized Turbine Tip Gap
,”
ASME J. Turbomach.
,
117
, pp.
578
584
.
7.
Kaiser, I., and Bindon, J. P., 1997, “The Effect of Tip Clearance on the Development of Loss Behind a Rotor and a Subsequent Nozzle,” ASME Paper 97-GT-53.
8.
Mayle, R. E., and Metzger, D. E., 1982, “Heat Transfer at the Tip of An Unshrouded Turbine Blade,” Proc. Seventh Int. Heat Transfer Conf., Hemisphere Pub., New York, pp. 87–92.
9.
Metzger
,
D. E.
, and
Rued
,
K.
,
1989
, “
The Influence of Turbine Clearance Gap Leakage on Passage Velocity and Heat Transfer Near Blade Tips: Part I—Sink Flow Effects on Blade Pressure Side
,”
ASME J. Turbomach.
,
111
, pp.
284
292
.
10.
Rued
,
K.
, and
Metzger
,
D. E.
,
1989
, “
The Influence of Turbine Clearance Gap Leakage on Passage Velocity and Heat Transfer Near Blade Tips: Part II—Source Flow Effects on Blade Suction Side
,”
ASME J. Turbomach.
,
111
, pp.
293
300
.
11.
Chyu
,
M. K.
,
Moon
,
H. K.
, and
Metzger
,
D. E.
,
1989
, “
Heat Transfer in the Tip Region of Grooved Turbine Blades
,”
ASME J. Turbomach.
,
111
, pp.
131
138
.
12.
Metzger
,
D. E.
,
Bunker
,
R. S.
, and
Chyu
,
M. K.
,
1989
, “
Cavity Heat Transfer on a Transverse Grooved Wall in a Narrow Flow Channel
,”
ASME J. Heat Transfer
,
111
, pp.
73
39
.
13.
Metzger
,
D. E.
,
Dunn
,
M. G.
, and
Hah
,
C.
,
1991
, “
Turbine Tip and Shroud Heat Transfer
,”
ASME J. Turbomach.
,
113
, pp.
502
507
.
14.
Ameri, A. A., and Steinthorsson, E., 1995, “Prediction of Unshrouded Rotor Blade Tip Heat Transfer,” ASME Paper 95-GT-142.
15.
Ameri, A. A., and Steinthorsson, E., 1996, “Analysis of Gas Turbine Rotor Blade Tip and Shroud Heat Transfer,” ASME Paper 96-GT-189.
16.
Ameri, A. A., Steinthorsson, E., and Rigby, L. D., 1997, “Effect of Squealer Tip on Rotor Heat Transfer and Efficiency,” ASME Paper 97-GT-128.
17.
Ameri, A. A., Steinthorsson, E., and Rigby, L. D., 1998, “Effect of Tip Clearance and Casing Recess on Heat Transfer and Stage Efficiency in Axial Turbines,” ASME Paper 98-GT-369.
18.
Ameri, A. A., and Bunker, R. S., 1999, “Heat Transfer and Flow on the First Stage Blade Tip of a Power Generation Gas Turbine: Part 2—Simulation Results,” ASME Paper 99-GT-283.
19.
Bunker, R. S., Baily, J. C., and Ameri, A. A., 1999, “Heat Transfer and Flow on the First Stage Blade Tip of a Power Generation Gas Turbine: Part 1—Experimental Results,” ASME Paper 99-GT-169.
20.
Yang, T. T., and Diller, T. E., 1995, “Heat Transfer and Flow for a Grooved Turbine Blade Tip in a Transonic Cascade,” ASME Paper 95-WA/HT-29.
21.
Azad
,
G. M. S.
,
Han
,
J. C.
,
Teng
,
S.
, and
Boyle
,
R.
,
2000
, “
Heat Transfer and Pressure Distributions on a Gas Turbine Blade Tip
,”
ASME J. Turbomach.
,
122
, pp.
717
724
.
22.
Azad
,
G. M. S.
,
Han
,
J. C.
, and
Boyle
,
R.
,
2000
, “
Heat Transfer and Pressure Distributions on the Squealer Tip of a Gas Turbine Blade
,”
ASME J. Turbomach.
,
122
, pp.
725
732
.
23.
Ou
,
S.
,
Han
,
J. C.
,
Mehendale
,
A. G.
, and
Lee
,
C. P.
,
1994
, “
Unsteady Wake Over a Linear Turbine Blade Cascade with air and CO2 Film Injection: Part I—Effect on Heat Transfer Coefficients
,”
ASME J. Turbomach.
,
116
, pp.
721
729
.
24.
Du
,
H.
,
Han
,
J. C.
, and
Ekkard
,
S. V.
,
1998
, “
Effect of Unsteady Wake on Detailed Heat Transfer Coefficient and Film Effectiveness Distributions for a Gas Turbine Blade
,”
ASME J. Turbomach.
,
120
, pp.
808
817
.
25.
Vedula, R. J., and Metzger, D. E., 1991, “A Method for the Simultaneous Determination of Local Effectiveness and Heat Transfer Distributions in Three-Temperature Convection Situations,” ASME Paper No. 91-GT-345.
26.
Ireland
,
P. T.
, and
Jones
,
T. V.
,
1987
, “
The Response Time of a Surface Thermometer Employing Encapsulated Thermochromic Liquid Crystals
,”
J. Phys. E
,
10
, pp.
1195
1199
.
27.
Teng
,
S.
,
Sohn
,
D. K.
, and
Han
,
J. C.
,
1999
, “
Unsteady Wake Effect of Film Temperature and Effectiveness Distributions for a Gas Turbine Blade
,”
ASME J. Turbomach.
,
122
, pp.
340
347
.
28.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
,
75
, pp.
3
8
.
You do not currently have access to this content.