The present research is an experimental study of “double enhancement” behavior in pool boiling from heater surfaces simulating microelectronic devices immersed in saturated FC-72 at atmospheric pressure. The term “double enhancement” refers to the combination of two different enhancement techniques: a large-scale area enhancement (square pin fin array) and a small-scale surface enhancement (microporous coating). Fin lengths were varied from 0 (flat surface) to 8 mm. Effects of this double enhancement technique on critical heat flux (CHF) and nucleate boiling heat transfer in the horizontal orientation (fins are vertical) are investigated. Results showed significant increases in nucleate boiling heat transfer coefficients with the application of the microporous coating to the heater surfaces. CHF was found to be relatively insensitive to surface microstructure for the finned surfaces except in the case of the surface with 8-mm-long fins. The nucleate boiling and CHF behavior has been found to be the result of multiple, counteracting mechanisms: surface area enhancement, fin efficiency, surface microstructure (active nucleation site density), vapor bubble departure resistance, and re-wetting liquid flow resistance. [S0022-1481(00)02603-7]

1.
Bar-Cohen
,
A.
,
1992
, “
State-of-the-Art and Trends in the Thermal Packaging of Electronic Equipment
,”
ASME J. Electron. Packag.
,
114
, pp.
254
270
.
2.
Haley, K. W., and Westwater, J. W., 1966, “Boiling Heat Transfer from a Single Fins,” Proceedings of the 3rd International Heat Transfer Conference, Vol. 3, Chicago, pp. 245–253.
3.
Lai
,
F. S.
, and
Hsu
,
Y. Y.
,
1967
, “
Temperature Distribution in a Fin Partially Cooled by Nucleate Boiling
,”
AIChE J.
,
13
, No.
4
, pp.
817
821
.
4.
Liaw
,
S. P.
, and
Yeh
,
R. H.
,
1994
, “
Fins With Temperature Dependent Surface Heat Flux-II. Multi-Boiling Heat Transfer
,”
Int. J. Heat Mass Transf.
,
37
, No.
10
, pp.
1517
1524
.
5.
Klein
,
G. J.
, and
Westwater
,
J. W.
,
1971
, “
Heat Transfer From Multiple Spines to Boiling Liquids
,”
AIChE J.
,
17
, No.
5
, pp.
1050
1056
.
6.
Mudawar
,
I.
, and
Anderson
,
T. M.
,
1993
, “
Optimization of Enhanced Surfaces for High Flux Chip Cooling by Pool Boiling
,”
ASME J. Electron. Packag.
,
115
, pp.
89
100
.
7.
Kumagai
,
S.
,
Jho
,
S. G.
,
Hirono
,
Y.
,
Shimada
,
R.
, and
Takeyama
,
T.
,
1987
, “
Boiling Heat Transfer From Circular Surfaces With Rectangular Fin Array
,”
Heat Transf. Jpn. Res.
,
16
, No.
2
, pp.
69
81
.
8.
Yeh
,
R. H.
,
1997
, “
Analysis of Thermally Optimized Fin Array in Boiling Liquids
,”
Int. J. Heat Mass Transf.
,
40
, No.
5
, pp.
1035
1044
.
9.
Guglielmini
,
G.
,
Misale
,
M.
, and
Schenone
,
C.
,
1996
, “
Experiments on Pool Boiling of a Dielectric Fluid on Extended Surfaces
,”
Int. Commun. Heat Mass Transfer
,
23
, No.
4
, pp.
451
462
.
10.
Chaudri
,
I. H.
, and
McDougall
,
I. R.
,
1969
, “
Aging Studies in Nucleate Pool Boiling of Isopropyl Acetate and Perchlorethylene
,”
Int. J. Heat Mass Transf.
,
12
, pp.
681
688
.
11.
Nishikawa, K., Fujita, Y., Ohta, H., and Hidaka, S., 1982, “Effect of the Surface Roughness on the Nucleate Boiling Heat Transfer Over the Wide Range of Pressure,” Proceedings of the 7th International Heat Transfer Conference, Munich, Germany, pp. 61–66.
12.
O’Connor
,
J. P.
, and
You
,
S. M.
,
1995
, “
A Painting Technique to Enhance Pool Boiling Heat Transfer in FC-72
,”
ASME J. Heat Transfer
,
117
, pp.
387
393
.
13.
Chang
,
J. Y.
, and
You
,
S. M.
,
1997
, “
Boiling Heat Transfer Phenomena From Micro-Porous and Porous Surfaces in Saturated FC-72
,”
Int. J. Heat Mass Transf.
,
40
, No.
18
, pp.
4437
4447
.
14.
Chang
,
J. Y.
, and
You
,
S. M.
,
1997
, “
Enhanced Boiling Heat Transfer From Micro-Porous Surfaces: Effects of a Coating Composition and Method
,”
Int. J. Heat Mass Transf.
,
40
, No.
18
, pp.
4449
4460
.
15.
Chang
,
J. Y.
, and
You
,
S. M.
,
1996
, “
Heater Orientation Effects on Pool Boiling of Micro-Porous-Enhanced Surfaces in Saturated FC-72
,”
ASME J. Heat Transfer
,
118
, pp.
937
943
.
16.
You, S. M., and O’Connor, J. P., 1998, “Boiling Enhancement Paint,” U. S. Patent #5814392.
17.
Zuber, N., 1959, “Hydrodynamic Aspects of Boiling Heat Transfer,” AEC Report No. AECU-4439, Physics and Mathematics.
18.
Polezhaev
,
Y. V.
, and
Kovalev
,
S. A.
,
1990
, “
Modeling Heat Transfer With Boiling on Porous Structures
,”
Therm. Eng.
,
37
, No.
12
, pp.
617
620
.
19.
Tehver, J., 1992, “Influences of Porous Coating on the Boiling Burnout Heat Flux,” Recent Adv. Heat Transfer, pp. 231–242.
20.
Haramura
,
Y.
, and
Katto
,
Y.
,
1983
, “
A New Hydrodynamic Model of the Critical Heat Flux, Applicable Widely to Both Pool and Forced Convective Boiling on Submerged Bodies in Saturated Liquids
,”
Int. J. Heat Mass Transf.
,
26
, pp.
389
399
.
21.
Srinivasan
,
V.
, and
Shah
,
R. K.
,
1997
, “
Fin Efficiency of Extended Surfaces in Two-Phase Flow
,”
Int. J. Heat Mass Transf.
,
18
, No.
4
, pp.
419
429
.
22.
Chang, J. Y., and You, S. M., 1997, “Pool Boiling Heat Transfer From Inclined, Micro-Porous Surfaces Simulating Microelectronic Devices,” Proceedings of the INTERpack ’97, E. Suhir, et al., eds, ASME, New York, pp. 2055–2063.
23.
Rohsenow
,
W. M.
,
1962
, “
A Method of Correlating Heat Transfer Data for Surface Boiling of Liquids
,”
ASME J. Heat Transfer
,
74
, pp.
969
975
.
24.
Rainey, K. N., 1999, “Pool Boiling Heat Transfer from Plain and Microporous Finned Surfaces in Saturated FC-72,” M.S. thesis, The University of Texas at Arlington, Arlington, Texas.
25.
Bromley
,
J. A.
,
1950
, “
Heat Transfer in Stable Film Boiling
,”
Chem. Eng. Prog.
,
46
, No.
5
, pp.
221
227
.
26.
Berenson
,
P. J.
,
1961
, “
Film Boiling Heat Transfer From a Horizontal Surface
,”
ASME J. Heat Transfer
,
83
, p.
351
351
.
You do not currently have access to this content.