This paper presents a conservative finite volume scheme for computing conduction heat transfer in materials with anisotropic conductivity. Unstructured solution-adaptive meshes composed of arbitrary convex polyhedra are used. Discrete energy balances are written over these polyhedra. Temperature gradients required for the evaluation of secondary diffusion fluxes are found by linear reconstruction. A fully implicit scheme is used for unsteady problems. The resulting discrete equations are solved using an algebraic multigrid scheme. Schemes for hanging-node and conformal adaption are implemented. Computations are performed using a variety of triangular and quadrilateral meshes. The results are compared to published analytical and numerical solutions and are shown to be satisfactory.

1.
Baliga
B. R.
, and
Patankar
S. V.
,
1983
, “
A Control-Volume Finite Element Method for Two-Dimensional Fluid Flow and Heat Transfer
,”
Numerical Heat Transfer
, Vol.
6
, pp.
245
261
.
2.
Banaszek
J.
,
1984
, “
A Conservative Finite Element Method for Heat Conduction Problems
,”
International Journal for Numerical Methods in Engineering
, Vol.
20
, pp.
2033
2050
.
3.
Barth, T. J., 1992, “Aspects of Unstructured Grids and Finite-Volume Solvers for the Euler and Navier-Stokes Equations,” Special Course on Unstructured Grid Methods for Advection Dominated Flow, AGARD Report 787.
4.
Beyeler
E. P.
, and
Guceri
S. I.
,
1988
, “
Thermal Analysis of Laser-Assisted Thermoplastic-Matrix Composite Tape Consolidation
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
110
, pp.
424
430
.
5.
Blackwell
B. F.
, and
Hogan
R. E.
,
1993
, “
Numerical Solution of Axisymmetric Heat Conduction Problems Using Finite Control Volume Technique
,”
Journal of Thermophysics and Heat Transfer
, Vol.
7
, pp.
462
471
.
6.
Brandt
A.
,
1977
, “
Multi-Level Adaptive Solutions to Boundary Value Problems
,”
Math. Comput.
, Vol.
31
, pp.
333
390
.
7.
Davidson
L.
,
1996
, “
A Pressure Correction Method for Unstructured Meshes with Arbitrary Control Volumes
,”
International Journal for Numerical Methods in Fluids
, Vol.
22
, pp.
265
281
.
8.
Demirdzic
I.
, and
Muzaferija
S.
,
1995
, “
Numerical Method for Coupled Fluid Flow, Heat Transfer and Stress Analysis Using Unstructured Moving Meshes With Cells of Arbitrary Topology
,”
Comp. Meth. Appl. Mech. Eng.
, Vol.
125
, pp.
235
255
.
9.
Howle
L. E.
, and
Georgiadis
J. G.
,
1994
, “
Natural Convection in Porous Media with Anisotropic Dispersive Thermal Conductivity
,”
Int. J. Heat Mass Transfer
, Vol.
37
, pp.
1081
1094
.
10.
Hutchinson
B. R.
, and
Raithby
G. D.
,
1986
, “
A Multigrid Method Based on the Additive Correction Strategy
,”
Numerical Heat Transfer
, Vol.
9
, pp.
511
537
.
11.
Jiang, Y., and Przekwas, A. J., 1994, “Implicit, Pressure-Based Incompressible Navier-Stokes Equations Solver for Unstructured Meshes,” AIAA-94-0305.
12.
Karki
K. C.
, and
Patankar
S. V.
,
1989
, “
Pressure Based Calculation Procedure for Viscous Flows at all Speeds in Arbitrary Configurations
,”
AIAA Journal
, Vol.
27
, No.
9
, pp.
1167
1174
.
13.
Katayama, K., and Saito, A., 1974, “Transient Heat Conduction in Anisotropic Solids,” International Heat Transfer Conference, Vol. 1, pp. 137–141.
14.
Kelkar
K. M.
,
1990
, “
Iterative Method for the Numerical Prediction of Heat Transfer in Problems Involving Large Differences in Thermal Conductivities
,”
Numerical Heat Transfer
, Vol.
18
, No.
1
, pp.
113
128
.
15.
Keyhani
M.
, and
Polehn
R. A.
,
1995
, “
Finite Difference Modeling of Anisotropic Flows
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
117
, pp.
458
464
.
16.
Lonsdale, R. D., 1991, “An Algebraic Multigrid Scheme for Solving the Navier-Stokes Equations on Unstructured Meshes,” Proceedings of the 7th International Conference on Numerical Methods in Laminar and Turbulent Flow, pp. 1432–1442.
17.
Mathur
S. R.
, and
Murthy
J. Y.
,
1997
, “
A Pressure-Based Method for Unstructured Meshes
,”
Numer. Heat Transfer
, Vol.
31
, No.
2
, pp.
195
216
.
18.
Nejhad
M. N. Ghasemi
,
Cope
R. D.
, and
Guceri
S. I.
,
1991
, “
Thermal Analysis of In-Situ Thermoplastic-Matrix Composite Filament Winding
,”
ASME Journal of Heat Transfer
, Vol.
113
, pp.
304
313
.
19.
Ozisik, N., 1980, Heat Conduction, John Wiley and Sons, New York, pp. 632–638.
20.
Padovan
J.
,
1974
, “
Steady Conduction of Heat in Linear and Non-Linear Fully Anisotropic Media by Finite Elements
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
96
, pp.
313
318
.
21.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York.
22.
Peric, M., 1985, “A Finite Volume Method for the Prediction of Three-Dimensional Fluid Flow in Complex Ducts,” Ph.D. thesis, University of London, London, UK.
23.
Schneider
G. E.
, and
Raw
M. J.
,
1987
, “
Control-Volume Finite-Element Method for Heat Transfer and Fluid Flow Using Co-Located Variables—1. Computational Procedures
,”
Numerical Heat Transfer
, Vol.
11
, pp.
363
390
.
24.
Venkatakrishnan, V., 1993, “On The Accuracy of Limiters and Convergence to Steady State Solutions,” AIAA 93-0880.
25.
Weaver
J. A.
, and
Viskanta
R.
,
1989
, “
Effects of Anisotropic Conduction on Solidification
,”
Numerical Heat Transfer
, Vol.
15
, pp.
181
195
.
26.
Yucel
A.
, and
Acharya
S.
,
1991
, “
Natural Convection of a Radiating Fluid in a Partially Divided Enclosure
,”
Numerical Heat Transfer
, Vol.
19
, pp.
471
485
.
This content is only available via PDF.
You do not currently have access to this content.