Sintering of powders occurs in a wide array of manufacturing technologies and geophysical phenomena. Despite the prevalence of powder sintering, little attention has been paid to sintering of macroscopic shapes under non-isothermal conditions. In this paper (1) features of a representative, experimentally grown solid shape produced by non-isothermal sintering are discussed, (2) prediction of the solid shape evolution is achieved using a hybrid heat transfer, sintering, and consolidation model, (3) comparison of the actual and predicted solid shapes is made, (4) parametric simulation of solid part growth in conjunction with void expansion is attained, and (5) analytical predictions of the void space evolution are developed and discussed.
1.
Ashley
S.
1993
, “Rapid Prototyping for Artificial Body Parts
,” Mech. Engr.
, Vol. 115
, pp. 50
–53
.2.
Beruto, D., Botter, R., and Searcy, A. W., 1988, “The Influence of Thermal Cycling on Densification: Further Tests of a Theory,” in Ceramic Transactions, Ceramic Powder Science II, B, G. L. Messing et al., eds., American Ceramic Society, Westerville, Ohio, Vol. 1, pp. 911–918.
3.
Beruto
D.
Botter
R.
Searcy
A. W.
1989
, “Influence of Temperature Gradients on Sintering: Experimental Tests of a Theory
,” J. Am. Ceram. Soc.
, Vol. 72
, pp. 232
–235
.4.
Bourell, D. L., 1990, “Solid Freeform Fabrication: An Advanced Manufacturing Approach,” Solid Freeform Fabrication Symposium, University of Texas at Austin, pp. 1–7.
5.
Carslaw, H. S., and Jaeger, J. C., 1959, Conduction of Heat in Solids, Oxford University Press, London.
6.
Cutler
I. B.
1969
, “Sintering of Glass Powders During Constant Rates of Heating
,” J. Amer. Ceram. Soc.
, Vol. 52
, pp. 14
–17
.7.
Deckard, C, and Beaman, J. J., 1989, “Recent Advances in Selective Laser Sintering,” Proceedings, 14th Conf. on Production Research and Technology, Ann Arbor, MI, pp. 623–630.
8.
Feldt
E. D.
Ballard
G. E. H.
1966
, “A Theory of the Consolidation of Snow
,” J. Glaciology
, Vol. 9
, pp. 145
–157
.9.
Frenkel
J.
1949
, “Viscous Flow of Crystalline Bodies under the Action of Surface Tension
,” J. Phys.
, Vol. 9
, pp. 385
–391
.10.
German
R. M.
Iacocca
R. G.
Johnson
J. L.
Liu
Yixiong
Upadhyaya
A.
1995
, “Liquid-Phase Sintering under Microgravity Conditions
,” J. Met.
, Vol. 47
, pp. 46
–48
.11.
Hashin
Z.
Shtrikman
S.
1962
, “A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials
,” J. Appl. Phys.
, Vol. 10
, pp. 3125
–3131
.12.
Jagota
A.
Scherer
G. W.
1993
, “Viscosities and Sintering Rates of a Two-Dimensional Granular Composite
,” J. Am. Ceram. Soc.
, Vol. 76
, pp. 3123
–3135
.13.
Kandis, M., and Bergman, T. L., 1996, “Void Formation and Crack Propagation in Polymer Parts Grown by Non-Isothermal Sintering,” in Thermal Transport in Solidification Processing, V. Prasad et al., eds., ASME HTD-Vol. 323, pp. 199–206.
14.
Kaviany, M., 1991, Principles of Heat Transfer in Porous Media, Springer-Verlag, New York.
15.
Kipphut
CM.
Bose
A.
Farooq
S.
German
R. M.
1988
, “Gravity and Configurational Energy Induced Microstructural Changes in Liquid Phase Sintering
,” Metall. Trans.
, Vol. 19A
, pp. 1905
–1913
.16.
Kuczynski
G. C.
1949
, “Study of the Sintering of Glass
,” J. Appl. Phys.
, Vol. 20
, pp. 1160
–1163
.17.
Martinez-Herrera
J. I.
Derby
J. J.
1994
, “Analysis of Capillary-Driven Viscous Flows During the Sintering of Ceramic Powders
,” AIChE J.
, Vol. 40
, pp. 1794
–1803
.18.
Martinez-Herrera
J. I.
Derby
J. J.
1995
, “Viscous Sintering of Spherical Particles via Finite Element Analysis
,” J. Am. Ceram. Soc.
, Vol. 78
, pp. 645
–649
.19.
Mughal
M. P.
Plumb
O. A.
1993
, “Thermal Densification of Metal-Ceramic Composites
,” Scripta Metallurgica et Materialia
, Vol. 29
, pp. 383
–388
.20.
Nelson
J. C.
Xue
S.
Barlow
J. W.
Beaman
J. J.
Marcus
H. L.
Bourell
D. L.
1993
, “Model of Selective Laser Sintering of Bisphenol-A Polycarbonate
,” Ind. Eng. Chem. Res.
, Vol. 32
, pp. 2305
–2317
.21.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Company, Washington.
22.
Rabinovich
E. M.
1985
, “Preparation of Glass by Sintering
,” J. Mater. Sci.
, Vol. 20
, pp. 4259
–4297
.23.
Raman
R.
German
R. M.
1995
, “A Mathematical Model for Gravity-Induced Distortion During Liquid Phase Sintering
,” Met. and Mater. Trans. A
, Vol. 26A
, pp. 653
–658
.24.
Reid
C. R.
Oakburg
R. G.
1990
, “A Continuum Theory for the Mechanical Response of Materials to the Thermodynamic Stress of Sintering
,” Mech. Materials
, Vol. 10
, pp. 201
–213
.25.
Reid, C. R., 1992, “Applications of a Continuum Theory for Sintering to Densification Rates,” in Mechanics of Granular Materials and Powder Systems, M. M. Mehrabadi, ed., ASME MD-Vol. 37, pp. 19–27.
26.
Rybakov
K. I.
Semenov
V. E.
1996
, “Densification of Powder Materials in Non-Uniform Temperature Fields
,” Philosophical Magazine A
, Vol. 73
, pp. 295
–307
.27.
Scherer, G. W., 1992, “Constitutive Models for Viscous Sintering,” in Mechanics of Granular Materials and Powder Systems, M. M. Mehrabadi, ed., ASME MD-Vol. 37, pp. 1–18.
28.
Soppe
W. J.
Janssen
B. C.
Bonekamp
B. C.
Correia
L. A.
Veringa
H. J.
1994
, “A Computer Simulation Method for Sintering in Three-Dimensional Powder Compacts
,” J. Mater. Sci.
, Vol. 29
, pp. 754
–761
.29.
Venkuta
D. A.
Johnson
D. L.
1971
, “Analysis of Sintering Equations Pertaining to Constant Rates of Heating
,” J. Amer. Ceram. Soc.
, Vol. 54
, p. 641
641
.30.
Whitaker, S., 1977, “A Theory of Drying in Porous Media,” in Advances in Heat Transfer, J. P. Hartnett and T. F. Irvine, Jr., eds., Academic Press, pp. 119–203.
This content is only available via PDF.
Copyright © 1997
by The American Society of Mechanical Engineers
You do not currently have access to this content.