The process of parameter estimation and the estimated parameters are affected not only by measurement noise, which is present during any experiment, but also by uncertainties in the parameters of the model used to describe the system. This paper describes a method to optimize the design of an experiment to deduce the maximum information during the inverse problem of parameter estimation in the presence of uncertainties in the model parameters. It is shown that accounting for these uncertainties affects the optimal locations of the sensors.

1.
Abernathy
R. B.
,
Benedict
R. P.
, and
Dowdell
R. B.
,
1985
, “
ASME Measurement Uncertainty
,”
ASME Journal Fluids Engineering
, Vol.
107
, pp.
161
164
.
2.
Alifanov, O. M., 1994, Inverse Heat Transfer Problems, Springer-Verlag, New York.
3.
Beck, J. V., and Arnold, K. J., 1977, Parameter Estimation in Engineering and Science, Wiley, New York.
4.
Fadale
T. D.
,
Nenarokomov
A. V.
, and
Emery
A. F.
,
1995
a, “
Two Approaches to Optimal Sensor Locations
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
117
, pp.
373
379
.
5.
Fadale
T. D.
,
Nenarokomov
A. V.
, and
Emery
A. F.
,
1995
b, “
Uncertainties in Parameter Estimation: The Inverse Problem
,”
The International Journal of Heat and Mass Transfer
, Vol.
38
, pp.
511
518
.
6.
Fedorov, V. V., 1972, Theory of Optimal Experiment, Academic Press, New York.
7.
Gill, P. E., Murray, W., Saunders, M. A., and Wright, M. H., 1986, User’s Guide for NPSOL—A Fortran Package for Nonlinear Programming, Technical Report SOL 86-2, Department of Operations Research, Stanford University, Stanford, CA, Jan.
8.
Goodwin, G. E., and Payne, R. L., 1977, Dynamic System Identification. Experiment Design and Data Analysis, Academic Press, New York.
9.
Kubrusly, C. S., and Malebranche, H., 1982, Proc. 3rd IFAC Symposium on Control of Distributed Parameter Systems, pp. 59–73.
10.
Moffat
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Experimental Thermal and Fluid Science
, Vol.
1
, pp.
3
17
.
11.
Musylev
N. V.
,
1980
, “
Uniqueness Theorems for Certain Inverse Heat Conduction Problems
,”
Zh. Vychisl. Mat. Fiz.
, Vol.
20
(
2
), pp.
388
400
.
12.
Polis, M. P., 1982, “The Distributed System Parameter Identification Problem: A Survey of Recent Results,” Proc. 3rd IFAC Symposium on Control of Distributed Parameter Systems, pp. 45–58.
13.
Seber, G. A. F., and Wild, C. J., 1989, Nonlinear Regression, Wiley Interscience, New York.
14.
Taktak
R.
,
Beck
J. V.
, and
Scott
E. P.
,
1993
, “
Optimal Experimental Design for Estimating Thermal Properties of Composite Materials
,”
Int. J. Heat Mass Transfer
, Vol.
36
(
12
), pp.
2977
2986
.
15.
Walter
E.
, and
Pronzato
L.
,
1990
, “
Qualitative and Quantitative Experiment Design for Phenomenological Models—A Survey
,”
Automanca
, Vol.
26
(
3
), pp.
195
213
.
This content is only available via PDF.
You do not currently have access to this content.