We present experimental and theoretical investigations of vapor phase growth in pore-network models of porous media. Visualization experiments of boiling of ethyl alcohol in horizontal etched-glass micromodels were conducted. The vapor phase was observed to grow into a disordered pattern following a sequence of pressurization and pore-filling steps. At sufficiently small cluster sizes, growth occurred “one pore at a time,” leading to invasion percolation patterns. Single-bubble (cluster) growth was next simulated with a pore-network simulator that includes heat transfer (convection and conduction), and capillary and viscous forces, although not gravity. A boundary in the parameter space was delineated that separates patterns of growth dictated solely by capillarity (invasion percolation) from other patterns. The region of validity of invasion percolation was found to decrease as the supersaturation (heat flux), the capillary number, the thermal diffusivity, and the vapor cluster size increase. Implications to continuum models are discussed.

1.
Afgan
N. H.
,
Jovic
L. A.
,
Kovalev
S. A.
, and
Lenykov
V. A.
,
1985
, “
Boiling Heat Transfer From Surfaces With Porous Layers
,”
Int. J. Heat Mass Trans.
, Vol.
28
, pp.
415
422
.
2.
Bau
H. H.
, and
Torrance
K. E.
,
1982
, “
Boiling in Low-Permeability Porous Materials
,”
Int. J. Heat Mass Trans.
, Vol.
25
, pp.
45
54
.
3.
Blunt
M.
, and
King
P.
,
1991
, “
Relative Permeabilities From Two- and Three-Dimensional Pore-Scale Network Modelling
,”
Transport in Porous Media
, Vol.
6
, pp.
407
433
.
4.
Buckley, J. S., 1990, Interfacial Phenomena in Petroleum Recovery, N. R. Morrow, ed., Marcel Dekker Inc., New York.
5.
Dhir
V.
, and
Catton
I.
,
1977
, “
Dryout Heat Fluxes for Inductively Heated Particulate Beds
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
99
, pp.
250
256
.
6.
Dullien, F. A. L., 1992, Porous Media: Fluid Transport and Pore Structure, Academic Press, New York.
7.
Epstein
M.
,
1994
, “
Similarity Solution for Combined Hydrodynamic and Heat Transfer Controlled Bubble Growth in a Porous Medium
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
116
, pp.
516
518
.
8.
Feder, J., 1988, Fractals, Plenum Press, New York.
9.
Fukusako
S.
,
Komoriya
T.
, and
Seki
N.
,
1986
, “
An Experimental Study of Transition and Film Boiling Heat Transfer in Liquid-Saturated Porous Bed.
ASME JOURNAL OF HEAT TRANSFER
, Vol.
108
, pp.
117
124
.
10.
Kong
X.
,
Haghighi
M.
, and
Yortsos
Y. C.
,
1992
, “
Visualization of Steam Displacement of Heavy Oils in a Hele-Shaw Cell
,”
Fuel
, Vol.
71
, pp.
1465
1471
.
11.
Kovalev
S. A.
,
Solovyev
S. I.
, and
Ovodkov
O. A.
,
1987
, “
Liquid Boiling on Porous Surfaces
,”
Heat Transfer—Sov. Res.
, Vol.
19
, pp.
109
120
.
12.
Lenormand
R.
,
Touboul
E.
, and
Zarcone
C.
,
1988
, “
Numerical Models and Experiments on Immiscible Displacements in Porous Media
,”
J. Fluid Mech.
, Vol.
189
, pp.
165
187
.
13.
Lenormand
R.
,
1990
, “
Liquids in Porous Media
,”
J. Phys.: Condens. Matter
, Vol.
2
, pp.
SA79–SA88
SA79–SA88
.
14.
Li
X.
, and
Yortsos
Y. C.
,
1994
, “
Bubble Growth and Stability in an Effective Porous Medium
,”
Phys. Fluids
, Vol.
6
, No.
5
, pp.
1663
1676
.
15.
Li
X.
, and
Yortsos
Y. C.
,
1995
a, “
Bubble Growth in Porous Media by Solute Diffusion
,”
Chem. Eng. Sci.
, Vol.
50
, No.
8
, pp.
1247
1271
.
16.
Li
X.
, and
Yortsos
Y. C.
,
1995
b, “
Visualization and Simulation of Bubble Growth in Pore Networks
,”
AIChE J.
, Vol.
41
, No.
2
, pp.
214
222
.
17.
Ogniewicz, Y., and Tien, C. L., 1979, “Porous Heat Pipe,” in: Heat Transfer, Thermal Control and Heat Pipes, W. B. Olstad, ed., Progress in Astronautics, Vol. 70, pp. 239–345.
18.
Parlar, M., and Yortsos, Y. C., 1987, “Percolation Theory of Steam-Water Relative Permeability,” SPE Paper No. 16969.
19.
Plesset
M. S.
, and
Prosperetti
A.
,
1977
, “
Bubble Dynamics and Cavitation
,”
Ann. Rev. Fluid Mech.
, Vol.
9
, pp.
145
185
.
20.
Satik, C., and Yortsos, Y. C., 1991, “Percolation Models for Boiling and Bubble Growth in Porous Media at Low Superheats,” presented at the 3rd Symposium on Multiphase Transport in Porous Media, ASME Winter Annual Meeting, Atlanta, GA.
21.
Satik, C., 1994, “Studies in Vapor-Liquid Flow in Porous Media,” PhD thesis, University of Southern California, Los Angeles, CA.
22.
Satik
C.
,
Li
X.
, and
Yortsos
Y. C.
,
1995
, “
Scaling of Single-Bubble Growth in a Porous Medium
,”
Phys. Rev. E
, Vol.
51
, No.
4
, pp.
3286
3295
.
23.
Schubert
G.
, and
Straus
J. M.
,
1979
, “
Steam-Water Counterflow in Porous Media
,”
J. Geophysical Res.
, Vol.
84
, pp.
1621
1679
.
24.
Sondergeld
C. H.
, and
Turcotte
L.
,
1977
, “
An Experimental Study of Two Phase Convection in a Porous Medium With Application to Geological Problems
,”
J. Geophys. Res.
, Vol.
82
, pp.
2045
2053
.
25.
Stauffer, D., 1985, Introduction to Percolation Theory, Taylor & Francis, Inc.
26.
Straus
J. M.
, and
Schubert
G.
,
1981
, “
One Dimensional Model of Vapor-Dominated Geothermal Systems
,”
J. Geophysical Res.
, Vol.
86
, No.
B10
, pp.
9433
9438
.
27.
Stubos
A. K.
,
Satik
C.
, and
Yortsos
Y. C.
,
1993
, “
Effects of Capillary Heterogeneity on Vapor—Liquid Counterflow in Porous Media
,”
Int. J. Heat Mass Transfer
, Vol.
36
, No.
4
, pp.
967
976
.
28.
Styrikovich, M. A., Malysenko, S. P., and Andrianov, A. B., 1990, “Nonequilibrium Phase Transitions at Boiling on Surfaces With Porous Coating,” Proceedings of the 9th Int. Heat Transfer Conference, Vol. 2, Jerusalem, Israel.
29.
Thome, J. R., 1990, Enhanced Boiling Heat Transfer, Hemisphere Publishing Co.
30.
Tung
V. X.
, and
Dhir
V. K.
,
1990
, “
Experimental Study of Boiling Heat Transfer From a Sphere Embedded in a Liquid-Saturated Porous Medium
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
112
, pp.
736
743
.
31.
Udell
K. S.
,
1983
, “
Heat Transfer in Porous Media Heated From Above With Evaporation, Condensation, and Capillary Effects
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
105
, pp.
485
492
.
32.
Udell
K. S.
,
1985
, “
Heat Transfer in Porous Media Considering Phase Change and Capillarity—the Heat Pipe Effect
,”
Int. J. Heat Mass Trans.
, Vol.
28
, pp.
485
495
.
33.
Wilkinson
D.
, and
Willemsen
J. F.
,
1983
, “
Invasion Percolation: A New Form of Percolation Theory
,”
J. Phys. A
, Vol.
16
, pp.
3365
3376
.
This content is only available via PDF.
You do not currently have access to this content.