Abstract

The flexibility of the casing plays an important role in the dynamic response of the gas turbine rotor. The effect of the support parameters on the dynamic stiffness of the supporting components must be considered. While finite element method analyses remain valuable, their time-intensive nature, particularly in model definition, necessitates the search for more time-efficient methods. Motivated by the need for fast, manageable solutions with repeatable configurations within defined design parameters, this paper introduces a novel multiscale Kolmogorov–Arnold network (MKAN) model to predict the dynamic stiffness of gas turbine casings. Unlike conventional methods, the MKAN model is an innovative, simplified alternative for predicting dynamic stiffness. The effectiveness of the MKAN model in predicting dynamic stiffness is validated using test set data, compared to common models. Additionally, the casing’s support stiffness and damping ratio parameters were identified using the trained MKAN combined with particle swarm optimization.

References

1.
Cavalca
,
K. L.
,
Cavalcante
,
P. F.
, and
Okabe
,
E. P.
,
2005
, “
An Investigation on the Influence of the Supporting Structure on the Dynamics of the Rotor System
,”
Mech. Syst. Signal Process.
,
19
(
1
), pp.
157
174
.10.1016/j.ymssp.2004.04.001
2.
Dikmen
,
E.
,
van der Hoogt
,
P. J. M.
,
de Boer
,
A.
, and
Aarts
,
R. G. K. M.
,
2010
, “
Influence of Multiphysical Effects on the Dynamics of the High Speed Mini Rotors—Part II: Results
,”
ASME J. Vib. Acoust.
,
132
(
3
), p.
031011
.10.1115/1.4000788
3.
Li
,
C.
,
Lei
,
B.
,
Ma
,
Y.
, and
Hong
,
J.
,
2020
, “
Research on Damping Vibration Reduction Design Method of Aeroengine Supporting Structure System
,”
ASME
Paper No. GT2020-16316.10.1115/GT2020-16316
4.
Wang
,
Q.
, and
Maslen
,
E. H.
,
2006
, “
Identification of Frequency-Dependent Parameters in a Flexible Rotor System
,”
ASME J. Eng. Gas Turbines Power
,
128
(
3
), pp.
670
676
.10.1115/1.2135814
5.
Yang
,
F.
,
Zhang
,
Y.
, and
Li
,
H.
,
2018
, “
Vibration Analysis of Rotating Rings With Complex Support Stiffnesses
,”
MATEC Web of Conferences
, Phuket, Thailand, p.
01010
.10.1051/matecconf/201823701010
6.
Wang
,
Y.
,
Ma
,
Y.
, and
Hong
,
J.
,
2022
, “
Study on Dynamic Stiffness of Supporting Structure and Its Influence on Vibration of Rotors
,”
Chin. J. Aeronaut.
,
35
(
11
), pp.
252
263
.10.1016/j.cja.2022.01.017
7.
Yu
,
M.
,
Feng
,
N.
, and
Hahn
,
E. J.
,
2012
, “
On the Identification of the Modal Parameters for a Flexible Turbomachinery Foundation
,”
ASME
Paper No. GT2012-68291.10.1115/GT2012-68291
8.
Hosoya
,
N.
, and
Yoshimura
,
T.
,
1999
, “
Estimation of Frequency Response Function on Rotational Degrees of Freedom of Structures
,”
ASME
Paper No. DETC99/MOVIC-8406.10.1115/DETC99/MOVIC-8406
9.
Satish Kumar
,
S.
,
Ganguli
,
R.
,
Kandagal
,
S. B.
, and
Jana
,
S.
,
2017
, “
Structural Dynamic Behavior of Axial Compressor Rotor
,”
ASME
Paper No. GTINDIA2017-4715.10.1115/GTINDIA2017-4715
10.
Amer
,
M.
,
Paehr
,
M.
,
Scheidt
,
L. P.
,
Seume
,
J. R.
, and
Schmied
,
J.
,
2022
, “
Determining the Influence of Casing Vibrational Behavior on Rotordynamics
,”
ASME J. Eng. Gas Turbines Power
,
144
(
5
), p.
051012
.10.1115/1.4053123
11.
Hong
,
J.
,
Chen
,
M.
, and
Liu
,
S.
,
2007
, “
Application of Whole Engine Finite Element Models in Aero-Engine Rotordynamic Simulation Analysis
,”
ASME
Paper No. GT2007-27162.10.1115/GT2007-27162
12.
Kubany
,
J. S.
IV
,
Tecza
,
J. A.
, and
Gustafsson
,
P.
,
2003
, “
Dynamic Evaluation of a Three Point Mount Baseplate for a Motor Driven, Centrifugal Compressor Package
,”
ASME
Paper No. DETC2003/VIB-48463.10.1115/DETC99/VIB-48463
13.
Smart
,
M.
,
Friswell
,
M. I.
,
Lees
,
A. W.
, and
Prells
,
U.
,
1998
, “
Estimating Turbogenerator Foundation Parameters
,”
Proc. Inst. Mech. Eng., Part C
,
212
(
8
), pp.
653
665
.10.1243/0954406981521420
14.
Wang
,
J.
,
Wang
,
C.
, and
Zhao
,
J.
,
2017
, “
Frequency Response Function-Based Model Updating Using Kriging Model
,”
Mech. Syst. Signal Process.
,
87
, pp.
218
228
.10.1016/j.ymssp.2016.10.023
15.
Qian
,
J.
,
Yu
,
E.
,
Zhang
,
J.
,
Zhan
,
D.
, and
Cheng
,
Y.
,
2018
, “
Optimization of the Vibration Response of a Longitudinal-Transverse Stiffened Conical Shell Based on an Ensemble of Surrogates
,”
ASME
Paper No. OMAE2018-77334.10.1115/OMAE2018-77334
16.
Brown
,
J. M.
,
Carper
,
E. B.
,
Kaszynski
,
A. A.
,
Gillaugh
,
D. L.
, and
Beck
,
J. A.
,
2022
, “
Gradient Enhanced Kriging Using Modal Sensitivity Approximations in a Reduced Basis Space for As-Manufactured Airfoil Analysis
,”
ASME
Paper No. GT2022-83402.10.1115/GT2022-83402
17.
Denimal
,
E.
,
Nechak
,
L.
,
Sinou
,
J.-J.
, and
Nacivet
,
S.
,
2016
, “
Kriging Surrogate Models for Predicting the Complex Eigenvalues of Mechanical Systems Subjected to Friction‐Induced Vibration
,”
Shock Vib.
,
2016
(
1
), p.
3586230
.10.1155/2016/3586230
18.
Denimal
,
E.
,
Sinou
,
J.
, and
Nacivet
,
S.
,
2022
, “
Prediction of Squeal Instabilities of a Finite Element Model Automotive Brake With Uncertain Structural and Environmental Parameters With a Hybrid Surrogate Model
,”
ASME J. Vib. Acoust.
,
144
(
2
), p.
021006
.10.1115/1.4051698
19.
Denimal
,
E.
,
Nechak
,
L.
,
Sinou
,
J.-J.
, and
Nacivet
,
S.
,
2018
, “
A Novel Hybrid Surrogate Model and Its Application on a Mechanical System Subjected to Friction-Induced Vibration
,”
J. Sound Vib.
,
434
, pp.
456
474
.10.1016/j.jsv.2017.08.005
20.
Gibanica
,
M.
, and
Abrahamsson
,
T. J. S.
,
2021
, “
Data-Driven Modal Surrogate Model for Frequency Response Uncertainty Propagation
,”
Probab. Eng. Mech.
,
66
, p.
103142
.10.1016/j.probengmech.2021.103142
21.
Cenedese
,
M.
,
Axås
,
J.
,
Yang
,
H.
,
Eriten
,
M.
, and
Haller
,
G.
,
2022
, “
Data-Driven Nonlinear Model Reduction to Spectral Submanifolds in Mechanical Systems
,”
Philos. Trans. R. Soc., A
,
380
(
2229
), p.
20210194
.10.1098/rsta.2021.0194
22.
Chen
,
X.
,
Zhang
,
H.
,
Zou
,
C.
,
Zhai
,
J.
, and
Han
,
Q.
,
2020
, “
Research on the Prediction Method of Unbalance Responses of Dual-Rotor System Based on Surrogate Models
,”
SN Appl. Sci.
,
2
(
1
), p.
12
.10.1007/s42452-019-1818-0
23.
He
,
J.
,
Jiang
,
D.
,
Zhang
,
D.
,
Tang
,
Z.
, and
Fei
,
Q.
,
2024
, “
Model Updating of Rotor System Based on the Adaptive Gaussian Process Model Using Unbalance Response
,”
J. Sound Vib.
,
571
, p.
118006
.10.1016/j.jsv.2023.118006
24.
Xie
,
J.
,
Sage
,
M.
, and
Zhao
,
Y. F.
,
2023
, “
Feature Selection and Feature Learning in Machine Learning Applications for Gas Turbines: A Review
,”
Eng. Appl. Artif. Intell.
,
117
, p.
105591
.10.1016/j.engappai.2022.105591
25.
Liu
,
Z.
,
Wang
,
P.
,
Zhao
,
Y.
,
Xie
,
Y.
, and
Zhang
,
D.
,
2024
, “
Nonlinear Dynamic Prediction and Design Optimization of Bladed-Disk Based on Hybrid Deep Neural Network
,”
Int. J. Non-Linear Mech.
,
162
, p.
104721
.10.1016/j.ijnonlinmec.2024.104721
26.
Deiana
,
G.
,
Vannini
,
G.
,
Meazzini
,
G.
,
Cangioli
,
F.
, and
Meli
,
E.
,
2024
, “
Neural Network Application to Rotordynamic Predictions of an Overhung Flexible Rotor
,”
ASME
Paper No. GT2024-121854.10.1115/GT2024-121854
27.
Mutra
,
R. R.
,
Srinivas
,
J.
, and
Rządkowski
,
R.
,
2021
, “
An Optimal Parameter Identification Approach in Foil Bearing Supported High-Speed Turbocharger Rotor System
,”
Arch. Appl. Mech.
,
91
(
4
), pp.
1557
1575
.10.1007/s00419-020-01840-x
28.
Asgari
,
H.
,
Chen
,
X.
,
Menhaj
,
M. B.
, and
Sainudiin
,
R.
,
2013
, “
Artificial Neural Network–Based System Identification for a Single-Shaft Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
135
(
9
), p.
092601
.10.1115/1.4024735
29.
Bruni
,
G.
,
Krishnababu
,
S.
, and
Jackson
,
S.
,
2023
, “
Application of Machine Learning to Forced Response Predictions of an Industrial Axial Compressor Rotor Blade
,”
ASME J. Eng. Gas Turbines Power
,
145
(
1
), p.
011019
.10.1115/1.4055634
30.
D’Alessandro
,
F.
,
Festjens
,
H.
,
Chevallier
,
G.
,
Cogan
,
S.
,
Benamara
,
T.
, and
Sainvitu
,
C.
,
2024
, “
Proper Orthogonal Decomposition-Based Surrogate Modeling Approximation for Aeroengines Nonlinear Unbalance Responses
,”
ASME J. Eng. Gas Turbines Power
,
146
(
1
), p.
011013
.10.1115/1.4063519
31.
Hunter
,
D.
,
Yu
,
H.
,
Pukish
,
M. S.
, III
,
Kolbusz
,
J.
, and
Wilamowski
,
B. M.
,
2012
, “
Selection of Proper Neural Network Sizes and Architectures—A Comparative Study
,”
IEEE Trans. Ind. Inf.
,
8
(
2
), pp.
228
240
.10.1109/TII.2012.2187914
32.
Liu
,
Z.
,
Wang
,
Y.
,
Vaidya
,
S.
, and
Tegmark
,
M.
,
2024
, “
KAN: Kolmogorov-Arnold Networks
,” e-print
arXiv:2404.19756
.10.48550/arXiv.2404.19756
33.
Abueidda
,
D. W.
,
Pantidis
,
P.
, and
Mobasher
,
M. E.
,
2024
, “
Deepokan: Deep Operator Network Based on Kolmogorov Arnold Networks for Mechanics Problems
,” e-print
arXiv:2405.19143
.10.48550/arXiv.2405.19143
34.
Hou
,
Y.
, and
Zhang
,
D.
,
2024
, “
A Comprehensive Survey on Kolmogorov Arnold Networks (KAN)
,” e-print
arXiv:2407.11075
.10.48550/arXiv.2407.11075
35.
Somvanshi
,
S.
,
Javed
,
S. A.
,
Islam
,
M. M.
,
Pandit
,
D.
, and
Das
,
S.
,
2024
, “
A Survey on Kolmogorov-Arnold Network
,” e-print
arXiv:2411.06078
.10.48550/arXiv.2411.06078
36.
Koenig
,
B. C.
,
Kim
,
S.
, and
Deng
,
S.
,
2024
, “
KAN-ODEs: Kolmogorov–Arnold Network Ordinary Differential Equations for Learning Dynamical Systems and Hidden Physics
,”
Comput. Methods Appl. Mech. Eng.
,
432
, p.
117397
.10.1016/j.cma.2024.117397
37.
Toscano
,
J. D.
,
Wang
,
L.-L.
, and
Karniadakis
,
G. E.
,
2024
, “
KKANs: Kurkova-Kolmogorov-Arnold Networks and Their Learning Dynamics
,” e-print
arXiv:2412.16738
.10.48550/arXiv.2412.16738
38.
Irie
, and
Miyake
,
1988
, “
Capabilities of Three-Layered Perceptrons
,”
Proceedings of the IEEE 1988 International Conference on Neural Networks
, San Diego, CA, July 24–27, pp.
641
648
.10.1109/ICNN.1988.23901
39.
Piegl
,
L.
,
Tiller
,
W.
,
Piegl
,
L.
, and
Tiller
,
W.
,
1995
, “
B-Spline Basis Functions
,” The NURBS Book, Springer, Berlin, Heidelberg, pp.
47
79
.
40.
Singh
,
B.
,
Patel
,
S.
,
Vijayvargiya
,
A.
, and
Kumar
,
R.
,
2023
, “
Analyzing the Impact of Activation Functions on the Performance of the Data-Driven Gait Model
,”
Results Eng.
,
18
, p.
101029
.10.1016/j.rineng.2023.101029
41.
Helton
,
J. C.
, and
Davis
,
F. J.
,
2003
, “
Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems
,”
Reliab. Eng. Syst. Saf.
,
81
(
1
), pp.
23
69
.10.1016/S0951-8320(03)00058-9
42.
Tatachar
,
A. V.
,
2021
, “
Comparative Assessment of Regression Models Based on Model Evaluation Metrics
,”
Int. Res. J. Eng. Technol.
,
8
(
9
), pp.
853
860
.https://www.irjet.net/archives/V8/i9/IRJET-V8I9127.pdf
43.
Serefoglu Cabuk
,
K.
,
Cengiz
,
S. K.
,
Guler
,
M. G.
,
Topcu
,
H.
,
Cetin Efe
,
A.
,
Ulas
,
M. G.
, and
Poslu Karademir
,
F.
,
2024
, “
Chasing the Objective Upper Eyelid Symmetry Formula; R2, RMSE, POC, MAE, and MSE
,”
Int. Ophthalmol.
,
44
(
1
), p.
303
.10.1007/s10792-024-03157-y
44.
Chicco
,
D.
,
Warrens
,
M. J.
, and
Jurman
,
G.
,
2021
, “
The Coefficient of Determination R-Squared is More Informative Than SMAPE, MAE, MAPE, MSE, and RMSE in Regression Analysis Evaluation
,”
Peerj Comput. Sci.
,
7
, p.
e623
.10.7717/peerj-cs.623
45.
Onyutha
,
C.
,
2020
, “
From R-Squared to Coefficient of Model Accuracy for Assessing ‘Goodness-of-Fits’
,”
Geosci. Model Dev. Discuss.
, pp.
1
25
.10.5194/gmd-2020-51
46.
Yao
,
J.
,
Liu
,
Y.
,
Lin
,
T.
,
Ping
,
X.
,
Xu
,
H.
,
Wang
,
W.
,
Xiao
,
Y.
,
Zhang
,
L.
, and
Wang
,
L.
,
2021
, “
Robotic Grasping Training Using Deep Reinforcement Learning With Policy Guidance Mechanism
,”
ASME
Paper No. MSEC2021-63974.10.1115/MSEC2021-63974
47.
Marini
,
F.
, and
Walczak
,
B.
,
2015
, “
Particle Swarm Optimization (PSO). A Tutorial
,”
Chemom. Intell. Lab. Syst.
,
149
, pp.
153
165
.10.1016/j.chemolab.2015.08.020
You do not currently have access to this content.