Abstract

Efforts to reduce the contribution of refrigeration to global warming have resulted in a phase-down of the use of fluorinated refrigerants. The alternative, natural refrigerants, such as propane (R290), have significantly lower global warming potential (GWP) and are less harmful to the environment. R290 is however flammable, which is problematic for applications like electronics cooling. Reverse Brayton Cycle (RBC) refrigeration can work with air as refrigerant (R729). Air is completely harmless; it can be used for direct cooling, allowing more effective cooling, faster cooldown, and a less complex cooling cycle. Despite its significant efficiency disadvantage at cooling temperatures above −50 °C, this can make R729 an attractive refrigerant for in applications where efficiency is not the most critical parameter. In this paper, the design considerations of compact, electrically driven RBC cooling machines (about 2 kWe) are discussed. Preliminary system design is presented for two different potential applications, high cooling temperatures (25 °C) and low cooling temperatures (−90 °C). The design process of the turbine stage of an RBC cooling machine including a method for matching compressor and turbine is presented. A demonstrator was built and tested.

References

1.
European Parliament and Council of European Union
,
2014
, “
Regulation (EU) No 517/2014
,” European Parliament and Council of European Union, Luxembourg, accessed Dec. 12, 2023, http://data.europa.eu/eli/reg/2014/517/oj/eng
2.
de Graaf
,
D.
,
Elsner
,
C.
,
Hoffmann
,
G.
,
Martens
,
K.
,
Thalheim
,
D.
, and
Plehn
,
W.
,
2021
, “
Hydrofluorocarbon Emission Reduction: A Crucial Contribution to Climate Protection Umweltbundesamt
,” accessed Dec. 4, 2023, https://www.umweltbundesamt.de/publikationen/
3.
Bloch
,
H. P.
, and
Soares
,
C.
,
2001
,
Turboexpanders and Process Applications
,
Gulf Professional Publishing
, Boston, MA.
4.
Shuailing
,
L.
,
Guoyuan
,
M.
,
Shuxue
,
X.
,
Yuexuan
,
G.
,
Xiaoya
,
J.
, and
Guoqiang
,
W.
,
2023
, “
A Review of Reverse Brayton Air Cycle Refrigerators
,”
Int. J. Refrig.
,
150
, pp.
200
214
.10.1016/j.ijrefrig.2023.02.016
5.
Giannetti
,
N.
, and
Milazzo
,
A.
,
2014
, “
Thermodynamic Analysis of Regenerated Air-Cycle Refrigeration in High and Low Pressure Configuration
,”
Int. J. Refrig.
,
40
, pp.
97
110
.10.1016/j.ijrefrig.2013.11.017
6.
Kruse
,
H.
, and
Sicars
,
S.
,
1994
, “
Technical Potential for Refrigeration, Air Conditioning and Heat Pump Applications of Air Cycle Systems
,”
Proceedings of IIR Conference on New Applications of Natural Working Fluids in Refrigeration and Air Conditioning
, Hannover, Germany, Oct. 10?14, pp.
179
193
.
7.
Horbaniuc
,
B. D.
,
2004
, “
Refrigeration and Air-Conditioning
,”
Encyclopedia of Energy
,
Elsevier
, Amsterdam, The Netherlands.10.1016/B0-12-176480-X/00085-1
8.
Grabow
,
R.
,
Kreter
,
T.
, and
Limberg
,
G.
,
1986
, “
A Ram Air Driven Air Cycle Cooling System for Avionics Pods
,”
SAE
Paper No. 860912.10.4271/860912
9.
Aigner
,
R.
,
Krawanja
,
A.
,
Luger
,
C.
,
Wollweber
,
M.
,
Claus
,
P.
,
Hörth
,
L.
, and
Streng
,
M.
,
2019
, “
Environmentally Friendly Air Conditioning for Trains - Field Data Measurement and Analysis on the Ice 3 Air-Cycle System
,”
Environmental Research of the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety
, Report No. (FKZ)
3714953110.
10.
Zhang
,
Z.
,
Liu
,
S.
, and
Tian
,
L.
,
2011
, “
Thermodynamic Analysis of Air Cycle Refrigeration System for Chinese Train Air Conditioning
,”
Syst. Eng. Proc.
,
1
, pp.
16
22
.10.1016/j.sepro.2011.08.004
11.
Zagarola
,
M. V.
, and
McCormick
,
J. A.
,
2006
, “
High-Capacity Turbo-Brayton Cryocoolers for Space Applications
,”
Cryogenics
,
46
(
2–3
), pp.
169
175
.10.1016/j.cryogenics.2005.11.018
12.
Swift
,
W. L.
,
Dolan
,
F. X.
, and
Zagarola
,
M. V.
,
2008
, “
The Nicmos Cooling System—5 Years of Successful On-Orbit Operation
,”
AIP Conf. Proc.
,
985
(
1
), pp.
799
806
.10.1063/1.2908673
13.
Braun
,
J.
,
Bansal
,
P.
, and
Groll
,
E.
,
2002
, “
Energy Efficiency Analysis of Air Cycle Heat Pump Dryers
,”
Int. J. Refrig.
,
25
(
7
), pp.
954
965
.10.1016/S0140-7007(01)00097-4
14.
Takushima
,
A.
,
Inoshiri
,
R.
, and
T
,
O.
,
2000
, “
Condensation Performance of Air-Cycle Dryer System
,”
Final Proceedings of the 4th IIR-Gustav Lorentzen Conference on Natural Working Fluids at Purdue
, West Lafayette, IN, July 25–28, pp.
508
515
.
15.
Wassink
,
J.
,
2021
, “
Tarnoc Develops Electrical Central Heating Boiler
,” accessed Dec. 19, 2023, https://www.tudelft.nl/en/delft-integraal/articles/dec-2021-nieuwe-energie/tarnoc-develops-electrical-central-heating-boiler
16.
B. V
,
T.
,
2023
, “
Tarnoc Turbine Heat Pump
,” accessed Dec. 19, 2023, https://tarnoc.nl/en/
17.
White
,
A.
,
2009
, “
Thermodynamic Analysis of the Reverse Joule–Brayton Cycle Heat Pump for Domestic Heating
,”
Appl. Energy
,
86
(
11
), pp.
2443
2450
.10.1016/j.apenergy.2009.02.012
18.
Saeed
,
M. Z.
,
Contiero
,
L.
,
Blust
,
S.
,
Allouche
,
Y.
,
Hafner
,
A.
, and
Eikevik
,
T. M.
,
2023
, “
Ultra-Low-temperature Refrigeration Systems: A Review and Performance Comparison of Refrigerants and Configurations
,”
Energies
,
16
(
21
), p.
7274
.10.3390/en16217274
19.
Refolution, 2024, “
Effizienzvergleich Von k¨Alteerzeugungstechnologien f¨ur Die Tieftemperaturanwendung (Ult) Zwischen −40 °C Und −110 °C
,” Refolution, Karlsruhe, Germany, accessed Aug. 9, 2023, https://www.refolution.de/de/kaeltetechnik/
20.
Wang
,
H. C.
,
Chen
,
G.
,
Gong
,
M.
, and
Li
,
X.
,
2017
, “
Performance Comparison of Single-Stage Mixed-Refrigerant Joule–Thomson Cycle and Reverse Brayton Cycle for Cooling 80 to 120 k Temperature-distributed Heat Loads
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
278
(
1
), p.
012051
.10.1088/1757-899X/278/1/012051
21.
Chen
,
S.
,
Fan
,
Y.
,
Yang
,
S.
,
Chen
,
X.
, and
Hou
,
Y.
,
2017
, “
Evaluation and Analysis on the Coupling Performance of a High-Speed Turboexpander Compressor
,”
Cryogenics
,
88
, pp.
81
90
.10.1016/j.cryogenics.2017.10.014
22.
Teichel
,
S.
,
Çokşen
,
A.
, and
Handschuh
,
P.
,
2023
, “
Compressor Design for Compact, Highspeed Electric Motors
,”
ASME
Paper No. GT2023-100418.10.1115/GT2023-100418
23.
Nellis
,
G.
, and
Klein
,
S. A.
,
2009
,
Heat Transfer
,
Cambridge University Press
, New York.
24.
Balje
,
O. E.
,
1981
,
Turbomachines: A Guide to Design Selection and Theory
, Wiley, New York.
25.
Aungier
,
R. H.
,
2000
,
Centrifugal Compressors: A Strategy for Aerodynamic Design and Analysis
, ASME Press, New York.
26.
Aungier
,
R. H.
,
2006
,
Turbine Aerodynamics: Axial flow and Radial-Inflow Turbine Design and Analysis
, ASME Press, New York.
27.
ANSYS, INC
,
2022
, “
R1, ANSYS CFX
,” ANSYS, Inc., Canonsburg, PA.
28.
CFTURBO GMBH
,
2022
, “
R1.1, CFturbo
,” Dresden, Germany.
29.
Iwrey
,
B.
, and
Johnson
,
P. K.
,
2022
, “
Compressor Maps and Coupling: Symmetry, Geometry, and Universality
,”
ASME
Paper No. GT2022-83599.10.1115/GT2022-83599
30.
Baines
,
N. C.
,
2005
,
Fundamentals of Turbocharging
, Concepts NREC, White River Junction, VT.
You do not currently have access to this content.